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Abstract. The study of animal behavior, particularly in insects, is crucial for understanding 
their biological and evolutionary aspects, with wide-ranging applications in agricultural science, 
pest management, conservation biology, and neuroscience. Investigating cognitive 
characteristics, specifically aversive learning, plays a pivotal role in comprehending the success 
of insects. This adaptive ability enables animals to efficiently cope with the stressful factors in 
their environment. In this study, we investigated the aversive learning capabilities of Bombus 
terrestris Audax workers, crucial pollinators across diverse ecosystems. Bees were trained and 
tested in a flight arena using artificial flowers equipped with electric shocks to simulate 
conditions wherebees could associate punishment alongside food resources with available cues. 
The result suggested that bees possess the ability to simultaneously detect potential threats and 
food resources, indicating a dual aversive-appetitive memory. Furthermore, comparing groups 
trained with aversive (electric shock) and neutral (distilled water) stimuli showed that danger 
cues led to faster learning and stronger memory formation. This conditioning setup aimed to 
simulate real-life foraging situations, exploring bee responses when confronted with potential 
dangers. These findings provide insights into the survival strategies of insects in challenging 
environments that negatively impact bee populations.  
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Introduction 
Learning is a fundamental aspect of insect behavior that plays a crucial role in their survival, adaptation, and overall 
success within the animal kingdom (Jones & Agrawal, 2017). Through learning, animals acquire knowledge and 
skills, leading to behavioral changes that facilitate navigation through their environment, resource acquisition, danger 
avoidance, and interactions with other species (Jones & Agrawal, 2017). Associative learning is a basic cognitive 
function that involves forming a connection between two or more stimuli or between a stimulus and response (Pearce 
& Bouton, 2001). It can take different forms, including appetitive and aversive learning (Itzhak et al., 2014). 
Appetitive learning occurs when animals learn to associate a particular stimulus with a positive outcome such as food 
or a reward (Itzhak et al., 2014). Aversive learning, on the other hand, occurs when animals learn to associate a 
particular stimulus with a negative outcome, which could be related to factors such as the presence of a predator or 
a natural enemy, toxic food, or the absence of food, prompting the animal to avoid the cues or display defensive 
behaviors (Ings & Chittka, 2008; Litvin et al., 2008; Roussel et al., 2009; Itzhak et al., 2014). 

 Aversive learning allows animals to recognize and respond to potential threats, thereby increasing their chances 
of survival (Itzhak et al., 2014). Insects, as a highly diverse and successful group of animals, exhibit remarkable 
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cognitive abilities (Giurfa, 2015; Chittka, 2017). Appetitive learning in insects has been extensively studied, 
particularly in species like fruit flies (Schipanski et al., 2008), honeybees (Menzel, 2001), and bumblebees (Laloi et 
al., 1999). Through appetitive learning, a conditioned stimulus (CS), such as color, odor, or location, is paired with 
an unconditioned stimulus (US) as a reward, such as food, host, or mate (Menzel et al., 1993; Vinauger et al., 2011; 
Reser et al., 2012; Lenschow et al., 2018; Cholé et al., 2019). Consequently, this reward motivates the insect to 
persist in the learning process and actively participate in the experiment (Menzel et al., 1993). One of the most 
renowned experiments in the field of appetitive learning focuses on conditioning of the proboscis extension response 
(PER) in bees (Giurfa & Sandoz, 2012). These experiments require restraining and closely monitoring bees in small 
apparatus or cages (Urlacher et al., 2010; Giurfa & Sandoz, 2012; Delkash-Roudsari et al., 2020). During the 
experiment, the bees are repeatedly exposed to a particular CS, which is usually a specific odor or color (Giurfa & 
Sandoz, 2012). At the same time, their antennae are stimulated by US, typically sugar water (Giurfa & Sandoz, 
2012). As a result, bees develop PER, leading them to extend their proboscis and lick sugar water when presented 
with the CS (Giurfa & Sandoz, 2012). After undergoing multiple stages of training, the conditioned stimulus alone 
triggers PER in the bee, demonstrating Pavlovian conditioning (Menzel, 1993; Laloi et al., 1999; Aquino et al., 2004; 
Giurfa & Sandoz, 2012). 

 One example of appetitive learning that allows insects to choose and make decisions more freely includes 
experiments in which the CS is presented outside the hive, paired with a reward. In these experiments, bees have the 
opportunity to travel from the hive to the test site. This setup creates a natural foraging environment, enabling the 
learning process to occur in a more realistic and ecologically relevant context (Ravi et al., 2016). However, there have 
been few reported examples of aversive conditioning in natural or semi-natural settings. One prominent example of 
such studies in insects is the sting extension reflex response (SER) observed in restrained bees (Núñez et al., 1983; 
Guiraud et al., 2018). In this experimental setup, the bee is entirely immobilized and positioned on an electric shock 
device or hot plate and, subsequently, a CS is presented in that setup (Forman, 1984; Vergoz et al., 2007; 
Tedjakumala and Giurfa, 2013; Junca et al., 2014). Recent studies have used honey bees in a maze with electric 
shocks to explore how walking insects avoid specific stimuli and move towards the opposite arm of the maze, which 
is marked with a different CS (Agarwal et al., 2011; Dinges et al., 2013; Nouvian & Galizia, 2019). However, the 
main problem with restrained bees and maze-based methods is that they may not accurately replicate the complex 
and dynamic nature of an insect's natural habitat and only offer limited spatial complexity. Consequently, such 
experiments may not fully capture the entire spectrum of navigational strategies and decision-making processes 
utilized by insects in the wild. Tethering insects, keeping them in small cages, or confining them within the maze 
can induce stress and result in altered behavior.  

Artificial and restricted environments may lead to behavioral changes that do not reflect natural behavior, 
potentially causing biased outcomes in experimental studies. It is important to note that insects encounter different 
risks in their foraging environment, including predators, parasites, climate change issues, and the frequent use of 
agrochemicals in ecosystems, which expose pollinators to environmental stressors (Klein et al., 2017). This raises the 
question of how pollinating bees in situations similar to a foraging environment recognize dangers and adjust their 
responses accordingly. Using a novel conditioning apparatus, this research attempts to study bumblebees' aversive 
behavior in a situation that is more similar to their natural habitat by allowing them to forage and fly freely in a 
simulated environment. The aversive stimulus presented here is the electric shock, which can represent the presence 
of danger and is delivered exactly at the location where the insect anticipates receiving the reward, which is the 
artificial flower. In this study, Bombus terrestris workers were used to examine how aversive stimuli affect their ability 
to learn and recall related visual cues. Because of their relatively large size, limited flight height, and impressive 
cognitive abilities (Goulson, 2008; Riveros & Gronenberg, 2009; Chittka, 2017), bumblebees have become ideal 
subjects for insect behavioral research.  

Studying aversive learning in bumblebees, especially in a simulated foraging setting that closely resembles their 
ecological environment, provides insights into the cognitive abilities of these important pollinators and can enhance 
our understanding of the mechanisms underlying their behavior, memory formation, and decision-making processes. 
By identifying factors that negatively affect bumblebees' foraging behavior, such as exposure to pesticides or specific 
floral cues, this knowledge can contribute to the development of effective conservation strategies and the promotion 
of sustainable agricultural practices. By creating pollinator-friendly environments, these efforts ensure the continued 
well-being of these beneficial insects. 
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Materials and methods 
Experimental setup and insects  

Three colonies of bumblebees (Bombus terrestris) were provided by the BIOBEST commercial company. The 
nutritional requirements of the colony, including pollen and 50% sucrose solution, were supplied ad libitum. All 
three colonies were maintained at standardized room temperature and a photoperiod of 12 hours of light followed 
by 12 hours of darkness. All the experiments were conducted at the Ecology and Behavior Laboratory of Plant 
Protection Department, University of Tehran. Each colony was housed in a two-partite wooden nest box (40x20x20 
cm). Two sections of the nest were interconnected through a two-centimeter diameter hole located at the bottom.  

The reason for using a two-partite nest was to ensure that all bees and broods, including eggs, larvae, and 
pupae, were kept in darkness (Fig. 1-A-1). Meanwhile, in the other part, it was possible to control the light 
exposure using a lid (Fig. 1-A-2).  Consequently, food could be provided in this part to encourage bees to exit and 
forage for food when the experiment was not in progress, and bees exhibiting stronger foraging motivation were 
identified before entering the flight arena. Using a transparent plexiglass corridor (25×5×5 cm) (Fig. 1-A-3), the 
nest was connected to a wooden flight arena (60×50×50 cm) which was covered with a transparent plexiglass lid 
(Fig. 1-A-4).  

The corridor was equipped with sliding doors that allowed controlling the bee's access to the flight arena. 
This arena allowed the insects to be exposed to different stimuli, resembling a simulated foraging environment, 
enabling the investigation and study of their behavior under controlled conditions. Feeders installed on a platform 
(hereafter referred to as artificial flowers) were placed inside the flight arena. The bees' visits to the artificial flowers 
were recorded using an Action Camera (YI Technology, China) and captured in slow motion mode (240 frames 
per second). 

Artificial flowers  

An artificial flower consisting of two metal discs was placed on a 4 cm high plastic platform inside the flight arena. 
The outer disc, a hollow circular plate with a 5.5 cm diameter, was connected to a wire as the positive pole, and 
the inner disc, a circular plate with a 1.5 cm diameter, was connected to another wire as the negative pole. A layer 
of plastic separated the two metal plates. This allowed electric current to be delivered when a bee touched both of 
the metal discs. Each artificial flower was separately connected with wires to a device comprising an AC-DC power 
transformer (converting 220 V to 24 V, 50 Hz, 3 Amps), a DC-DC converter, a voltage reducer module, and 
switches allowing for manual control of the electric shock, enabling users to turn it on or off as needed (Fig. 1-B). 
Blue or yellow laminated hollow discs positioned on top of the outer metal plate were used as the CS (Fig. 1-E). 

When the bees landed to feed on the food solution placed at the center of the inner metal disc, their contact 
with both metal discs completed the circuit, allowing the generation of an electric current (Fig. 1-D). In restrained 
honey bees, a voltage of 7.5 - 8 induces the SER response (Núñez et al., 1997; Vergoz et al., 2007, Carcaud et al., 
2009). To find the best situation for free-flying bumblebees in this setup, before conducting the main experiment, 
different voltages ranging from 3 V to 24 V were tested on the bees. A voltage of 20 volts was selected because it 
elicited the most intense behavioral response without causing harm to bees. If immediately after landing on the flower 
and making contact with the food solution, the bees displayed a brief tremor, moved their legs and antennae away, 
fell on their backs on the arena floor, or flew away, it could be confirmed that they had been subjected to an electric 
shock. 

Experiments  

The experiment consisted of three phases: pre-training, training, and the memory test. 

Pre-training phase 

Prior to the learning phase, a pre-training phase was conducted to acclimate the bees to the artificial flowers and 
landing platforms. During this phase, all bees were given unrestricted access to the artificial flowers to forage and 
find the reward location, which was a 10-microliter droplet of 30% sucrose solution, without experiencing any 
aversive stimuli or color cues (Fig. 1-C). By using a lower sucrose solution concentration during the pre-training 
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phase, the bees were motivated to learn and perform better during the subsequent training phase when the 
concentration was increased. This approach maximizes the efficiency of the conditioning process. Among the 
actively visiting bees, 36 individuals were selected from different colonies and labelled on their thorax with a small 
number tag (12 bees from each colony). 

Training phase  

In order to study the impact of aversive stimuli on the avoidance learning process of workers, previously marked 
bees from the pre-training phase were individually trained to establish an association between color and either 
reward or punishment during the learning procedure. In the flight arena, a total of eight artificial flowers were 
arranged, each containing a 10-microliter droplet of the desired solution. Among these flowers, four were 
associated with reward, while the other four were associated with punishment. 

 The bees were divided into four groups of nine individuals each. In the first group, yellow flowers were 
associated with a 20-volt electric shock, while blue flowers in this group did not have any electric shock. 
Conversely, the second group experienced the opposite condition, where blue flowers were paired with the electric 
shock, and yellow flowers had no electric shock. Therefore, if there was a preference for a specific color among the 
bees, this factor could be considered in the statistical analyses. In both the first and second groups, both types of 
flowers (with and without electric shock) contained a 10-microliter droplet of a 50% sucrose solution. For the 
third and fourth groups, instead of using the electric shock, only a droplet of distilled water was provided to 
examine the effect of the absence of reward as a control group, versus punishment. Therefore, among the eight 
flowers, four contained a 10-microliter droplet of a 50% sucrose solution, while the other four contained a 10-
microliter droplet of distilled water. The color arrangement for these flowers followed the same order as that of 
the first two groups. Training consisted of five bouts, with each bee undergoing five foraging trips individually. 
At each bout, the bee was allowed to enter the flight arena and visit the flowers as long as she desired. Afterwards, 
the bee could freely return to the nest through the corridor. A visit was considered only when the bee landed on a 
flower and the solution (either sucrose or water) was tested with her proboscis and antennae. After each visit by 
the bee, the empty flowers were immediately refilled. At the end of each training bout, all flowers were cleaned 
with 70% ethanol. The color cues and aversive/appetitive/neutral stimuli were then randomly rearranged to ensure 
that the bee choices were not influenced by visual signals or olfactory markers. 

 
Fig. 1 - Insect Conditioning Apparatus. A) A two-partite nest box connected to the flight arena via a transparent 
corridor, with the flight arena being equipped with electrified artificial flowers; B) The device used to equip artificial 
flowers with an electric shock mechanism; C) A metal artificial flower with the outer disc wired as the positive pole 
and the inner disc wired as the negative pole; D) A Bombus terrestris worker feeding sucrose solution on the artificial 
flower; E) Artificial flowers with colored signs for conditioning purposes.  
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Memory test 

Twenty-four hours after each bee completed all five training bouts, she was allowed to enter the flight arena once 
again for the memory test. During this phase, the colored cues were presented in a new random pattern, and none 
of the flowers were associated with reward or punishment (sucrose solution and electric shock were removed). 
Instead, all flowers contained only a 10-microliter droplet of distilled water. Each bee was given six minutes to 
forage and the number of visits to each color was recorded. 

Statistical analysis 

The statistical analysis for both learning and memory data was performed in R software version 4.3.0, using 
Generalized Linear Mixed Effect Models (GLMM) from "lme4" package (Bates et al., 2015). To test the effect of 
the response variables, an ANOVA with the Anova () function of the "car" package was used. The simplest model 
was identified using the AIC criterion and backward stepwise elimination. Because the response variable consisted 
of binary data, a binomial distribution with a logit link function was used for the analysis. The model assumptions 
were verified by examining histograms and Q-Q plots, and a significance level of p<0.05 was considered (Russell 
& Burch, 1959). In the model used for learning, the effects of colony and color were found to be non-significant. 
As a result, these two factors were removed from the model through the simplification process. The dependent 
variable in the analysis was the response of bees to the stimulus. The independent variables, including the stimulus 
and learning bouts, were treated as fixed effects. The bee ID was considered a random effect in the model to 
account for individual variability among bees. In the model used for memory performance, the condition was 
similar to that of the first model, but the only independent variable was the stimulus. Graphs were made using the 
"ggplot2" package from R 4.3.0. 

Results 

Learning performance 

The response of the bees was investigated during the five training bouts. The electric shock was used as the aversive 
stimulus, while distilled water served as the neutral stimulus during the learning phase. The response of the bees 
varied significantly depending on the bout (χ2= 87.5954, df=4, P<0.001), revealing that the probability of visiting a 
rewarded flower increased with bout number. Specifically, the responses of the bees increased from the third to the 
fifth bouts for both stimuli. However, the increase in the response was greater for the aversive stimulus compared to 
the neutral stimulus (Fig. 2). The post-hoc test indicated that the effect of the electric shock as an aversive stimulus 
on learning performance was stronger compared to the distilled water as a neutral stimulus. This difference was 
particularly significant during the fourth and fifth bouts (Table 1).  

The findings indicate that the bees' responses in identifying rewarding colors are modulated by the stimulus 
type. Aversive stimuli elicit a more distinct reaction compared to neutral stimuli in the context of color recognition 
by bees. Consequently, the model proposes that, in general, bees exhibit a higher tendency to visit the rewarded 
color when exposed to aversive stimuli as opposed to neutral stimuli. 

 

Table 1 – Comparison of aversive stimulus (electric shock) versus neutral stimulus (distilled water) in different 
learning phases of Bombus terrestris. 

Comparison of aversive stimulus versus neutral stimulus z ratio p value 
First Bout -0.350 0.7260 

Second Bout 1.043 0.2967 
Third Bout 1.319 0.1873 
Fourth Bout 2.288 0.0222* 
Fifth Bout 3.643 0.0003** 
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Fig. 2 - Learning curve of Bombus terrestris exposed to an aversive stimulus (electric shock) compared to a neutral 
stimulus (distilled water), during five training bouts. * p=0.0222, ** p=0.0003 

 

 
Fig. 3 - Memory performance of Bombus terrestris 24 hours after training, comparing the aversive stimulus with 
the neutral stimulus. Different letters indicate significant differences. ***p < .0001. 
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Memory 

The results revealed a significant difference between the aversive and neutral stimuli, regarding the memory 
performance of the bees 24 hours after training (χ2= 33.28, df=1, P<0.001). Bees in the aversive group displayed 
a preference for previously rewarded flowers, selecting them 2.13 times more frequently compared to bees exposed 
to the neutral stimulus (Fig. 3). 

The model did not find any significant effect on the colony or color. This suggests that these factors did not 
significantly influence the bees' ability to respond accurately to the stimuli, and after the training process, bees did 
not exhibit a specific preference for any particular color. Therefore, the aversive stimulus leads to the formation of 
a strong long-term memory in bees to avoid the electric shock. 

Discussion 
The investigation of animal behavior is of considerable significance across different scientific fields, including 
ecology, evolution, and neuroscience (Mench, 1998; Smith & Kennedy, 2009). Insects have evolved to occupy 
diverse ecological niches and, as well-adapted organisms within various ecosystems, possess notable information-
processing capabilities that facilitate their effective adaptation to their environment (Smith &Kennedy, 2009). 
Importantly, insects demonstrate the capacity to learn and adjust their behavior in response to different situations 
(Ritzmann & Büschges, 2007; Grueter & Leadbeater, 2014). Discovering how insects acquire and apply 
knowledge from past experiences to overcome potential threats is crucial to understand their decision-making 
abilities (Guerrieri et al., 2005; Hadar & Menzel, 2010; Devaud et al., 2015).  

Recent advances in the study of insect behavior have provided opportunities to explore the underlying 
mechanisms that drive these adaptive responses. However, avoidance learning in insects under semi-natural 
conditions remains poorly studied. It is important to note that honey bees and bumblebees play a significant role 
in pollination and contribute to the improved functioning of ecosystems (Goulson, 2008; Khalifa et al., 2021). 
Despite their ecological significance and crucial role in advancing our understanding of the cognitive abilities of 
insects, we have limited knowledge about aversive learning in these species under comparable simulated conditions 
(Dukas, 2008; Hollis et al., 2017). Previous studies have explored aversive learning in honey bees and bumblebees 
by subjecting them to various aversive conditions, including pesticides (Tan et al., 2014; Delkash-Roudsari et al., 
2020), toxic food resources (Black et al., 2021), predators (Craig, 1994; Jones & Dornhaus, 2011), and changes 
in oxygen (O2) and carbon dioxide (CO2) levels (Gholami, 2023; Gholipour Faramarzi, 2020).  

These investigations have been conducted either entirely within natural farm environments (Black et al., 
2021; Dukas & Morse, 2003) or entirely under controlled conditions, often involving restrained insects within 
cages (Vergoz et al., 2007; Carcaud et al., 2009; Tedjakumala & Giurfa, 2013; Delkash-Roudsari et al., 2020). It 
is worth highlighting that, while it is necessary to control certain experimental conditions to investigate the 
mechanisms underlying the observed behaviors, we also need to study the behavior of insects in conditions similar 
to their natural habitat. Therefore, to investigate aversive learning in these insects, it is crucial to design 
experiments that replicate their natural habitat in a related ecological context while controlling the experimental 
conditions. This approach facilitates the exploration of complex interactions and underlying neural circuits, 
providing ecological validity and unbiased observations (Simons & Tibbetts, 2019; De Bruijn et al., 2021; 
Thiagarajan & Sachse, 2022).  

Researchers can replicate real-life conditions in experiments by combining factors, such as flower structures, 
simulating insect predators or threats, and incorporating environmental cues. This approach guarantees that 
observed behaviors, to some extent, remain uninfluenced by completely artificial laboratory elements but instead 
reflect the responses of insects in their ecologically relevant context. In this study, we used a novel apparatus to 
investigate aversive learning in insects within an arena that closely resembled their foraging environment. B. 
terrestris workers underwent training and were tested within a flight arena containing artificial flowers equipped 
with electric shocks. Upon leaving the nest, bees could enter the foraging environment, and by flying and observing 
the available artificial flowers, they could freely evaluate and choose flowers based on their preferences.  
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The unique design of the artificial flowers allowed bees to locate them easily and, once landed, they could 
evaluate the danger only when they fed on the flower nectar (sucrose solution). Bees were successfully trained to 
recognize visual cues, and their learning process became stable after approximately three training bouts. After 
undergoing all five bouts of training, particularly in the group exposed to electric shocks as an aversive stimulus, 
the establishment of long-term memory occurred within 24 hours.  In accordance with the findings of other studies 
which demonstrated the ability of insects to learn and avoid different unpleasant situations (Desneux et al., 2007; 
Gill et al., 2012; Schneider et al., 2012; Williamson & Wright, 2013; Moret & Schmid-Hempel, 2000; Mayack 
& Naug, 2010; Iqbal & Mueller, 2007; Schafer et al., 2011), bees in this study could also learn to associate specific 
colors with danger (aversive learning). Additionally, they were capable of recognizing stimuli that indicated the 
absence of the electric shock and, conversely, the presence of a reward (appetitive learning).  

Previous studies have demonstrated that different insects, including cockroaches (Horridge, 1962), mantids 
(Zabala et al., 1984), grasshoppers (Foreman, 1984), wasps (Santoro et al., 2015), and social insects such as 
honeybees (Vergoz et al., 2007; Giurfa et al., 2009; Tedjakumala & Giurfa, 2013), exhibit avoidance learning 
when confined to restricted conditions and subjected to punishment. However, it should be noted that insects 
placed under these conditions not only experience aversive stimuli, but also encounter additional stress due to 
their confinement and the lack of freedom to make independent choices (Van Huis, 2019). Thus, in subsequent 
stages of experiments, scrutinizing molecular interactions in the brain or other body organs might not be reliable, 
and the investigation of social insect behavior when interacting with fellow nestmates or other insects in the 
foraging environment could become challenging. The present conditioning apparatus offers an opportunity for 
more balanced experiments, allowing us to assess the behavior of free-flying insects in a simulated aversive context.   

The results of the experiment showed strong evidence of the existence of a dual aversive-appetitive memory 
in B. terrestris workers. Comparing two groups of bees subjected to a noxious stimulus and a neutral stimulus 
showed that cues representing life-threatening dangers enhanced rapid learning and resulted in more robust and 
persistent memory, as opposed to cues associated with lower food quality. The absence of food or lower food 
quality can be compensated by expending additional energy to locate new resources in the environment (Boyd, 
1999). However, warning signals that threaten an individual's survival require immediate avoidance.  

As indicated by the findings of this study, after 24 hours, during the memory test, bees that experienced 
electric shocks exhibited complete avoidance of danger-predicting color cues. Evidence indicates that numerous 
environmental stressors can affect bees, even if they do not directly result in mortality. For instance, exposure to 
pesticides or climate change issues, such as elevated carbon dioxide levels and changes in oxygen levels, can 
influence the mobility, memory, orientation, and foraging efficiency of bees (Desneux et al., 2007; Gill et al., 
2012; Schneider et al., 2012; Williamson & Wright, 2013; Delkash-Roudsari et al., 2020; Gholipour Faramarzi, 
2020; Gholami, 2023). Parasites can also subject bees to stress, leading to learning disabilities and disruptions in 
temperature regulation (Moret & Schmid-Hempel, 2000; Mayack & Naug, 2010; Iqbal & Mueller, 2007; Schafer 
et al., 2011). Although these non-lethal effects may not necessarily result in the death of every individual bee, they 
can significantly affect the colony dynamics and performance. By investigating how these organisms respond to 
environmental stressors and potential risks, we can develop more appropriate solutions to help their conservation. 
Integrating behavioral ecology, cognitive neuroscience, and evolutionary biology facilitates the development of 
effective strategies for conserving and managing pollinators in different ecosystems. 
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 تاریخچه مقاله 

 پوریعقوب فتحی دبیر تخصصی:   07/1402/ 07 پذیرش:  29/12/1401 دریافت:
 

 چکیده 
  اعصاب  علوم  و  حفاظتی  شناسیزیست   آفات،  مدیریت  کشاورزي،علوم ، کاربردهاي گسترده در  هاآن   تکاملی  و  بیولوژیکی  هايجنبه   درك  براي  حشرات،  ویژه  به  حیوانات،  رفتار  مطالعه

  موثر   طور  به  خود   محیط  در  تا  سازدمی   قادر  را  حیوانات  تطبیقی  توانایی  این.  دارد  حشرات  موفقیت  درك  در  نقشی اساسی  اجتنابی،  یادگیري  ویژهبه   شناختی،  هايویژگی   بررسی  دارد.
  قرار  بررسی مورد ،مختلف هاياکوسیستم  افشان مهم درگرده  ،Bombus terrestris Audax  کارگر زنبورهاي  اجتنابی یادگیري توانایی مطالعه، این در. کنند مقابله زااسترس  عوامل با

منابع غذایی موجود شناسایی بتوانند تنبیه را در کنار   که  شرایطی  سازيشبیه   براي الکتریکی  شوك  به   مجهز  مصنوعی  هايگل   از   استفاده  با پرواز  يمحفظه  یک   در  زنبورها . گرفت
  یک   دهنده نشان   که  دارند،  را  غذایی  منابع   با  همراه  بالقوه  تهدیدات   همزمان  شناسایی   توانایی  زنبورها  که  داد  نشان  نتایج.  شدند  آزمایش  و  داده  آموزش   ،ها مرتبط کنندو با نشانه 

 که   داد  نشان   شدند،  داده  آموزش)  مقطر  آب(  خنثی  و)  الکتریکی  شوك (  آزاردهنده  هايمحرك   با  که  هاییگروه   مقایسه  این،  بر   علاوه.  است  اشتیاقی   -  اجتنابی   دوگانه  حافظه
 به   شبیه  احتمالی،  خطرات  با  مواجهه  در  زنبورها  واکنش  بررسی  سازيشرطی   دستگاه  این  هدف.  شودمی  ترقوي   حافظه  گیريشکل   و   ترسریع   یادگیري  بهمنجر    خطر  هاينشانه 

 دارد،   زنبورها  جمعیت  بر  منفی  تأثیرات  که  برانگیزيچالش   هايمحیط   در  حشرات  بقاي  هاياستراتژي   مورد  در  بینشی   هایافته   این.  بود  واقعی  زندگی  در  جستجوگري  هايموقعیت 
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