Effect of cold storage on performance of *Trichogramma brassicae* (Hymenoptera: Trichogrammatidae) reared on *Ephesia kuehniella* and *Ectomyelois ceratoniae*

Ailih Amini¹, Mojtaba Hosseini¹, Hussein Sadeghi¹ & Seyed Hossein Goldansaz²

1- Department of Plant Protection, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

Abstract. Trichogrammatid wasps are the most common natural enemies around the world used for biocontrol many important lepidoptan pests. Therefore, the availability of suitable storage methods for these parasitoids is valuable in biological control. In this study, the performance of *Trichogramma brassicae* reared on two different hosts and in two different cold storage periods was investigated. Wasp pupae formed on *Ephesia kuehniella* and *Ectomyelois ceratoniae* eggs, were kept in 10 °C for 30 days and then in 4 °C for 4 and 8 weeks. The effect of the treatment combinations on wasp’s emergence rate, sex ratio and the number of female and male parasitoids in parental wasps (F₀) and their progeny (F₁) were estimated. In addition, adult wasp’s shape (wingless and abnormality) and parasitism rate were investigated in parental wasps (F₀) and their progeny (F₁). The results of this study showed that emergence rate of *T. brassicae* in F₀ was significantly influenced by the interaction between host and cold storage period. The highest and lowest emergence rate were respectively found on *E. creatoniae* in control and *E. kuehniella* in 8 weeks cold storage period. Sex ratio and the number of female parasitoids in F₀ and F₁ were significantly influenced by cold storage period, whereas interactive effect of these factors did not affect significantly sex ratio and the number of females in both generations. Also, wingless and abnormality of wasps in F₀ was not significantly influenced by any treatment combination. Parasitism rate of wasps reared on both hosts in F₁, significantly decreased by increasing in cold storage duration. Finally, the results indicated that the most of qualitative characteristics of wasps grown on *E. ceratoniae* were clearly better than those of wasps grown on *E. kuehniella* both in F₀ and F₁.

Keywords: biological control, egg parasitoid, augmentative release, quality control, carob moth

Introduction

Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae), is the key pest of pomegranate orchards in Iran and many regions around the world and causes significant damage on nut and fruit products such as almonds, pistachios, pomegranates, stone and pomes fruits (Botha et al., 2004; Azema & Mirabzadae, 2005). Several control methods, including sterile insect insect (Chakroun et al., 2017), mating disruption (Mamay et al., 2016), mass trapping (Mamay & Dag, 2016), biological control (Memari et al., 2016; Zougari et al., 2021), mechanical control like fruit bagging and removal (Mamay, 2021) and chemical control (Warner et al., 1990; Mnif et al., 2013), have been examined to reduce carob moth damage in pomegranate orchards. However, the use of insecticides is not...
applicable because the larvae are protected from insecticides inside the fruit (Kishani-Farahani et al., 2012). Mechanical and biological control methods particularly egg parasitoids of Trichogramma species are mostly used in Iran to control this pest (Ebrahimi, et al., 1998; Moezipour, 2006).

Trichogramma brassicae Bezdenco has been proven to be the most widespread Trichogramma species in Iran and is commonly mass-reared for release in rice, corn, cotton, tomato, soybean fields and pomegranate orchards to control serious lepidopteran pests (Farrokh et al., 2010; Moezipour et al., 2008). The success of biological control of mentioned pest depends not only on the time and the number of Trichogramma wasps released, but also on their quality (i.e. emergence, longevity, fecundity and searching capacity) (Bigler, 1994; Cerutti & Bigler, 1995; Dutton et al., 1996; Van Lenteren & Tommasini, 2002).

Long-term storage of Trichogramma species is possible; especially cold-storage methods are common (Wang & Smith, 1996; Garcia et al., 2002; Ayvaz et al., 2008). Two main cold storage techniques have been used in mass rearing of Trichogramma spp. including with and without previous diapause induction (Greenberg et al., 1996). Pre-storage (representing fall conditions: acclimation period) and cold-storage (representing winter conditions), cause long-term storage in T. brassicae with high emergence rate of adults (Rahimi-Kalde et al., 2017; Cagnotti et al., 2018). Acclimation of either 30 days at 10 ºC or 24 days at 13 ºC allowed T. brassicae immatures to develop with a lower mortality than those exposed directly at 5 ºC (Lessard & Boivin, 2013).

Also, duration of exposure to low temperature has considerable effect on quality of biological agents (Denlinger & lee, 2010). For example, different storage periods of the wasp’s pupae in 4 ºC (1, 2, 3 and 4 weeks) had a significant effect on the adult emergence rate of T. cacoeciae Marchal, T. evanescens westwood and T. brassicae (Ozder, 2004). A significant reduction in adult emergence due to the lower cold-storage temperatures and longer duration, compared with the control group, was observed in these three species and other Trichogramma spp. (Jalali & Singh, 1992; Pitcher et al., 2002; Ozder, 2004).

On the other hand, different hosts produce parasitoids wasps with different performance and efficiency (Muli et al., 2010; Farazmand, 2007). For example, when the T. evanescens reared on three various hosts (Sitotroga cerealella Olivier, Ephemia kuehniella Zeller and Galleria mellonella Linnaeus) for controlling cotton bollworm Helicoverpa armigera (Hübner), had different qualitative characteristics such as parasitism and emergence rates, fecundity and longevity (El-Wakeil, 2007).

Indeed, there are many studies which are separately focused on the effect of cold storage time or host’s species on the performance and efficiency of Trichogramma wasps (Rahimi-Kaldeh et al., 2017; Abbes et al., 2020). However, there is little information for influence of interaction between cold storage period and host’s species on the abilities of Trichogramma wasps. Thus, in the current study, we aimed to evaluate interactive effect of cold storage periods (control, 4 and 8 weeks) and two different hosts (E. kuehniella and E. ceratoniae) on T. brassicae qualitative characteristics both in parental and progeny generations.

Materials and methods

Insect culture

Ectomyelois ceratoniae larvae were collected from pomegranate orchards in Birjand (South- Khorasan Province, Iran). The larvae were transferred to container (30 × 20 × 5 cm), containing pistachio powder (with low marketability and quality; about 50 larvae per unit). Containers kept in a big cage with net walls (80 × 80 × 150 cm) in room conditions set at 25 ± 2 ºC, 50 ± 5% (RH), and 16:8 (L:D) photoperiod (Ziaoddini et al., 2011). After adults’ emergence, the moths were allowed to fly in the cage for one day to get ready for mating. Then, moths were transferred to small cages for egg-laying. The pomegranate moths were reared for several generations in this condition.

The populations of E. kuehniella and T. brassicae were obtained from the colonies maintained at Insect Ecology and Pest Management Laboratory of Agriculture Faculty in Ferdowsi University of Mashhad. The parasitoids were reared on 24 hours old eggs of the E. kuehniella, in growth chamber (25 ± 1 ºC, 65 ± 5% RH, 16:8 [L:D]).
Cold storage treatments

The eggs of both hosts (E. kuehniella and E. ceratoniae) were sterilized by exposing them to UV-C lamp (15 W Philips Holland) with a wavelength of 280 nm with a distance of 30 cm for 30 minutes (Nazeri et al., 2015). Fifty numbers of 24-hours old eggs of E. kuehniella and E. ceratoniae, were separately sprinkled over a 20% honey solution layer on paperboard strips. Each strip was placed in glass vial (10 × 1 cm) with five pair of newly emerged parasitoid, Trichogramma brassicae and a droplet of honey solution for feeding parasitoids. Vials were plugged with cotton and held for one day at 25 ± 1 °C, 65-70% RH and 16:8 h (L:D) photoperiod. After 24 h, adult parasitoids were removed from glass vials. Strips containing the parasitized eggs were kept under rearing conditions as above mentioned until they reached the blackened stage (6th day of the pupal stage). The pupal stage was used because it showed better tolerance to cold storage compared to other embryonic stages in several Trichogramma spp. (Lopez & Morrison, 1980; Jalali & Singh, 1992; Abbes et al., 2020). Then vials were kept in 10 °C in darkness for 30 days (as acclimation duration) (Rahimi-Kaldeh et al., 2017).

Two different cold storage durations were examined: the glass vials were stored in the refrigerator at 4 ± 1 °C in darkness for 4 and 8 weeks, respectively (Ozder & Saglam, 2005; Ayvaz, et al., 2008). Treatment combinations including two different host’s eggs and two cold storage durations were replicated 20 times. At the end of each storage duration, vials were transferred into an incubator and maintained at standard rearing conditions until adult’s emergence. Control groups were kept at standard rearing conditions without any cold storage duration in 20 repetitions. The effect of cold storage durations and different hosts on qualitative characteristics of parasitoids were estimated by determining the emergence rate (dividing the number of parasitized eggs presenting emergence holes by the total number of parasitized eggs as a percentage for each egg card), sex ratio, the number of female and male parasitoids, and wingless percentage for each vial.

Quality of progeny

The mated female wasps (24-h old) from each treatment combination (cold storage period and different hosts), were used to quality assessment of the wasp progeny. One female wasp was released in a glass vial with a card contains 20 eggs of E. ceratoniae or E. kuehniella. Vial was plugged with cotton and held for one day at 25 ± 1 °C, 65-70% RH and 16:8h (L:D) photoperiod. After 24 h, adult parasitoid was removed from the glass vial and strip containing the parasitized eggs was kept under standard rearing conditions until adult emergence. Then the emergence rate, sex ratio and parasitism percentage were estimated for each vial. This experiment had 20 repetitions for each treatment combination.

Statistical analyses

All data of wasps (F₀ and F₁) except wing deformity were tested for normality and the other assumptions of analysis of variance (ANOVA). The effect of cold storage periods and different hosts on qualitative characteristics of T. brassicae were analyzed by two-way full factorial ANOVA (cold storage period × different host). When ANOVA indicated a significant effect, means were separated using Tukey’s honestly significant difference test. Wing deformity of wasps (F₀) was analyzed as binary responses using logistic regression (logit link function) with the cold storage period, different hosts and their interaction as predicted factors. All statistical analyses were performed using R project for statistical computing (R Core Team, 2020).

Results

Interactive effect of cold storage period and host on the emergence rate of adult wasps was significant in parental generation (F₀) (F₂,114 = 13.8, P < 0.01). The emergence rate of wasps stored on both hosts significantly decreased with an increase in cold storage period (Fig.1).

It was a significant reduction in sex ratio by increasing in cold storage period in F₀ (F₂,114 = 55.7, P < 0.001), (Table 1). Also, the sex ratio of wasps was significantly higher on E. ceratoniae than that on E. kuehniella in F₀ (F₁,114 =15.85, P < 0.001), (Table 1). However, results showed that the interaction between host and cold storage period had no significant effect on sex ratio in F₀ (F₂,114 =0.44, P = 0.65). The number of female parasitoids was significantly affected either by cold storage period (F₂,114 = 491.5, P < 0.001) or host (F₁,114 = 36.14, P < 0.001), (Table 1).
Effect of cold storage on performance of *Trichogramma brassicae* ...

The number of male parasitoids was not significantly influenced neither by cold storage period (F2,114 = 1.7, P = 0.18) or host (F1,114 = 2.14, P = 0.11), (Table 1). The interaction between cold storage period and host did not affect the number of female and male parasitoids (F2,114 = 1.7, P = 0.19 and F2,114 = 1.8, P = 0.16, respectively).

Effect of cold storage period on wing deformity of parasitoid wasps in F0 was not significant ($\chi^2 = 1.05$, df = 2, 116, P = 0.35). Similarly, there was no statistical differences in the number of adult parasitoid wasps with wing deformity among *E. ceratoniae* and *E. kuehniella* hosts ($\chi^2 = 1.41$, df = 1, 116, P = 0.25).

Either cold storage period or host affect significantly the emergence rate of *T. brassicae* wasps in progeny generation (F1) (F2, 114 = 338.4, P < 0.001 and F1, 114 = 51.5, P < 0.001, respectively). However, the interaction between these factors did not affect this parameter (F2, 114 = 0.28, P = 0.75). Within the same host species, the emergence rate of wasps stored for 8 weeks, was significantly lower than those of stored for 4 weeks and control (Table 2). In comparison between two hosts’ species, the emergence rate of adult wasps reared on eggs of *E. ceratoniae* was significantly higher than that reared on eggs of *E. kuehniella* (Table 2). Sex ratio of adult wasps in progeny generation (F1) not only influenced by each factor individually (cold storage period: F2, 114 = 87.1, P < 0.001; host: F1, 114 = 4.7, P < 0.01) but also significantly affected by the interaction of both factors (F2, 114 = 3.6, P = 0.01). While the highest percent of sex ratio was observed from wasps kept on *E. ceratoniae* in control, the lowest percent of sex ratio was found from those stored on *E. kuehniella* in 8 weeks cold period (Table 2).

Table 1. Effect of cold storage period and host on sex ratio, number of female and male of *Trichogramma brassicae* in parental generation F0. Different letters in each column indicated a significant difference between treatment combinations (P < 0.01), n = 20.

<table>
<thead>
<tr>
<th>cold storage period</th>
<th>host</th>
<th>sex ratio (%)</th>
<th>number of females</th>
<th>number of males</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>E. ceratoniae</td>
<td>79.4±1.6a</td>
<td>34.2±0.6a</td>
<td>9.0±0.8a</td>
</tr>
<tr>
<td></td>
<td>E. kuehniella</td>
<td>70.0±3.4a</td>
<td>29.2±1.4b</td>
<td>12.7±1.6a</td>
</tr>
<tr>
<td>4 weeks</td>
<td>E. ceratoniae</td>
<td>65.6±1.8b</td>
<td>19.9±0.5c</td>
<td>10.6±0.7a</td>
</tr>
<tr>
<td></td>
<td>E. kuehniella</td>
<td>60.2±2.8b</td>
<td>16.6±0.5d</td>
<td>11.3±0.9a</td>
</tr>
<tr>
<td>8 weeks</td>
<td>E. ceratoniae</td>
<td>53.6±2.3c</td>
<td>10.0±0.2e</td>
<td>9.1±0.7a</td>
</tr>
<tr>
<td></td>
<td>E. kuehniella</td>
<td>44.5±1.7d</td>
<td>7.6±0.2e</td>
<td>9.6±0.3a</td>
</tr>
</tbody>
</table>
Interactive effect of cold storage period and host on the number of female and male parasitoids was also significant in progeny generation (F₁) (F₂, 114 = 5.9, P < 0.01 and F₂, 114 = 7.4, P < 0.01, respectively). The highest number of female parasitoids was found from wasps kept on E. ceratoniae in control, but the lowest ones was observed from those stored on E. kuehniella in 8 weeks cold period (Table 2).

The parasitism rate in progeny generation (F₁) not only was significantly influenced by cold storage period (F₂, 114 = 148.5, P < 0.001) and host (F₁, 114 = 63.2, P < 0.001) individually, but also it was significantly affected by the interaction between these two factors (F₂, 114 = 4.1, P = 0.02). The female wasps grown on the host with longer cold storage period had a significantly lower parasitism rate compare to those grown on the hosts with shorter cold storage period and control (Fig. 2). Also, the parasitism rate of female wasps grown on E. ceratoniae was significantly higher than those on E. kuehniella.

Discussion

It would be useful to store the parasitoid for some biocontrol program when synchronizing the parasitoids with pest population. However, the potential value for use of cold storage in commercial production needs to be evaluated in terms of economies. Finding methods to increase duration of storage for biological control agents is an important issue and helps producers to provide a large number of beneficial insects at the appropriate time in field. It also causes the easier acceptance of natural hosts by a reduction in the number of generations which is necessary for their mass rearing (Nazeri et al., 2015; Rahimi-Kaldeh et al., 2017).

Table 2. Effect of cold storage period and host on emergence rate, sex ratio, number of female and male of *Trichogramma brassicae* in progeny generation F₁. Different letters in each column indicated a significant difference between treatment combinations (P < 0.01), n = 20.

<table>
<thead>
<tr>
<th>Parental cold storage period</th>
<th>host</th>
<th>emergence rate (%)</th>
<th>sex ratio (%)</th>
<th>number of female</th>
<th>number of male</th>
</tr>
</thead>
<tbody>
<tr>
<td>control</td>
<td>E. ceratoniae</td>
<td>67±1.3a</td>
<td>76±2.0a</td>
<td>9.1±0.3a</td>
<td>2.8±0.2a</td>
</tr>
<tr>
<td></td>
<td>E. kuehniella</td>
<td>59±0.8b</td>
<td>67±2.0b</td>
<td>7.1±0.1b</td>
<td>3.5±0.2a</td>
</tr>
<tr>
<td>4 weeks</td>
<td>E. ceratoniae</td>
<td>42±1.7c</td>
<td>56±2.6b</td>
<td>4.8±0.2c</td>
<td>3.7±0.1a</td>
</tr>
<tr>
<td></td>
<td>E. kuehniella</td>
<td>34±1.1d</td>
<td>54±2.2b</td>
<td>3.8±0.1d</td>
<td>3.1±0.2a</td>
</tr>
<tr>
<td>8 weeks</td>
<td>E. ceratoniae</td>
<td>28±0.8e</td>
<td>40±0.02c</td>
<td>2.2±0.1e</td>
<td>3.3±0.1a</td>
</tr>
<tr>
<td></td>
<td>E. kuehniella</td>
<td>20±0.6f</td>
<td>43±2.0c</td>
<td>1.7±0.08e</td>
<td>2.3±0.1b</td>
</tr>
</tbody>
</table>

Fig 2. Parasitism rate in the progeny generation (F₁) of *Trichogramma brassicae* teared on *Ephesia kuehniella* and *Ectomyelois ceratoniae* in 0, 4 and 8 weeks cold storage periods. Different letters indicated a significant difference between treatment combinations (P < 0.01).
Several studies showed that temperature, photoperiod, cold storage duration, species or even strains of wasps and hosts, influence on diapause induction, post-diapause duration and quality of stored *Trichogramma* spp. (Laing & Corrigan, 1995; Rahimi-Kaldeh et al., 2017). In our study, a reduction in the emergence rate of parasitoids due to the cold storage of *T. brassicae* was found and the percentage of parasitoid emergence rate in control was greater than any cold-stored ones. The decrease in the emergence rate of parasitoids primarily is due to the mortality caused by the cold storage of *T. brassicae* during the pupal stage and, due to negative physiological and physical changes that have been occurred to the pupa of *T. brassicae*. Moreover, freezing and subsequent thawing could also have provoked changes in the hardness of the host eggs chorion and making it more difficult for the wasp to cut it with their mouth parts for emergency (Kivan Kilic, 2005). Unlike to the results of current study, 1 to 16 weeks cold storage of *T. bactrae* in 4 °C, had no significant effect on the emergence rate of female wasps (Mohamed & El-Heneidy, 2020), probably because of difference parasitoid species.

Here, cold storage specifically in a longer period (8 weeks) affected negatively the quality of emerged adults of *T. brassicae*, so that, the sex ratio and parasitism rate of *T. brassicae* lessened as cold storage period increased. Several studies have addressed the negative effect of cold storage period on the quality of emerged parasitoid adults (Tezze & Betto, 2004; Lessard & Bovin, 2013; Rahimi-Kaldeh et al., 2017; Vaez et al., 2018; Abbes et al., 2020). These may be attributed to the increase in energy necessity and gradual weakness of the individual during metamorphosis in the storage period, and therefore accumulation of toxic metabolites and oxidative stress caused by a buildup of reactive oxygen (Amice et al., 2008). The results also showed that the number of emerging female parasitoids significantly decreased with an increase in the cold storage period, while the number of emerging males was not affected by the period of cold storage in both the F0 and F1 generations. Some studies have reported a shift towards the production of male-biased parasitoids after prolonged cold exposure, indicating differential mortality of females (Farid et al., 2001; Chen et al. 2008). The quality of the host influences the oviposition patterns of parasitoids, with female eggs typically being laid on higher-quality hosts (Van den Assem, 1971; Otto & Mackauer, 1998). Since the extended period of cold storage decreases the quality of the host (Colinet et al., 2006), increasing the duration of host storage probably reduces the proportion of female offspring of parasitoids.

In some *Trichogramma* species and other parasitoids, morphological alterations occur during cold storage period; such as adult size reduction, deformation in wings, legs, antennae and sensillae structure (Pintureau and Daumal, 1995; Rundle et al., 2004; Bourdais et al., 2006), although our results didn’t show a significant difference in adult deformation after cold storage in different host and cold storage period.

This study showed that *T. brassicae* pupae reared on *E. ceratoniae* eggs, were relatively amenable to cold storage and can be used in mass production process. The qualitative characteristics of F0 and F1 parasitoids reared on *E. ceratoniae*, were significantly better than those reared on *E. kuehniella*. This phenomenon may be attributed to that *E. ceratoniae* is natural host for *T. brassicae*, whereas *E. kuehniella* is a fictitious host for it.

In general, our results indicated that *T. brassicae* could be exposed to an additional 4 weeks at 4 °C after acclimation and diapause induction at 10 °C for 30 days without much decrease in fitness of parasitoids. Therefore, acclimation can protect *T. brassicae* efficiency and quality, and should be considered in storage protocol of this parasitoid. Similar results were reported by Rahimi-Kaldeh et al. (2017). The possible reason of acclimation during cold storage may be that the amount of cryoprotectants (e.g. glycerol and alanine), which reduce the ice formation at any temperature by increasing the total concentration of all the solutes, increases in diapausing insects during acclimation period (like autumn) and so, causes more adaptation for wasp pupa to tolerate cold storage period (Rivers et al., 2000). From a practical point of view, our results revealed that the treatment with 30 days of acclimation and 4 weeks of cold store is useful to establish a cold storage protocol for *T. brassicae*. However, the decrease of *T. brassicae* performance after cold storage period should be considered in mass production, and the release percentage should be increased by the equivalent of lack % emergence. Moreover, using the other methods such as ‘recurrent warming method’ and ‘rapid acclimation method’ [a short pre-exposure (minutes or hours) to sub-lethal low temperature] which are improve the efficiency of cold stored parasitoids, should be considered (Denlinger & Lee, 2010; Gardner et al., 2012). On the other hand, the influence of cold storage conditions on the field success of *T. brassicae* should be assessed because the efficacy of *Trichogramma* species is different in field from laboratory (Hached et al., 2021).
Acknowledgments

The authors are grateful to the Ferdowsi University of Mashhad for providing the facilities.

Funding

This research was supported by a grant from the Ferdowsi University of Mashhad (Project Number, P3/53874)

REFERENCES

Effect of cold storage on performance of Trichogramma brassicae...

تأثیر ذخیره‌سازی در سرما بر عملکرد (Trichogramma brassicae (Hymenoptera: Trichogrammatidae) پرورش یافته‌روی

Ectomyeloid ceratoniae و Ephestia kuehniella

عالیه امینی 1، مجتبی حسینی 1، حسین صادقی 1 و سید حسین گلدانساز 2

1- گروه گیاه‌شناسی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

amin.alieh@yahoo.com

m.hosseini@um.ac.ir

sadeghin@um.ac.ir

https://orcid.org/0000-0001-7574-7553

2- گروه گیاه‌شناسی، دانشکده علوم مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران

goldansaz@ut.ac.ir

https://orcid.org/0000-0001-7574-7553

وکده

زنده‌ماندن و نیروزه‌رسیدن، مهار و کنترل کردن، الگویی‌سازی، درمان درمان‌های مختلف در پرورش‌های یافتگاهی، از جمله Trichogramma brassicae (Hymenoptera: Trichogrammatidae)، از این رو کاربرد این جاندار در گردشگری مصرف کردن و کنترل کردن، مشاهده شده است. در این مطالعه، تأثیر ذخیره‌سازی در سرما بر عملکرد Trichogramma brassicae (Hymenoptera: Trichogrammatidae) بر روی Ephestia kuehniella و Ectomyeloid ceratoniae بررسی گردید. برای این منظور، این جاندار در مسایل ذخیره‌سازی در سرما به مدت ۱۲ (F1) و ۲۴ (F2) هفته در دمای ۹ و ۴، به ترتیب در دمای ۹۰ و ۸۰ درجه سانتی‌گراد و در مدت ۱۲ (F1) و ۲۴ (F2) هفته در دمای ۹ و ۴ درجه سانتی‌گراد ذخیره گردیدند. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفته در دمای ۹ درجه سانتی‌گراد، در دمای ۹۰ درجه سانتی‌گراد مشاهده شد. نتایج نشان داد که بهترین نتایج در مدت ۱۲ هفته و دمای ۴ درجه سانتی‌گراد در سرما به مدت ۹۰ هفте...