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Abstract. Tuza absoluta is an invasive polyphagous pest recently reported on
tomato, brinjal, and potato in India. It has acquired resistance to many chemical
insecticides under field control. A toxicity test demonstrated a 31.7-fold reduction
in mortality with high resistance to chlorantraniliprole selection in laboratory
circumstances. The cross-resistance profile to various pesticides revealed moderate
to high resistance to flubendiamide (2.3-fold) succeeded by spinosad, chlorpyrifos,
cypermethrin, imidacloprid, and esfenvalerate (RR=6.0, 3.3, 3.1 and 2.8-fold). No
resistance was detected to emamectin and abamectin (RR= 0.9-fold). The
synergism bioassay utilizing PBO (piperonyl butoxide), DEM (diethyl-maleate)
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Introduction

Tuta absoluta s a polyphagous pest from the Gelechiidae family, usually referred to as the South American tomato
pinworm. Due to its high reproductive potential and extensive host range, it has invaded many countries, including
Europe, Africa, Western Asia, and Central America (Biondi era/., 2018). Recently it has affected numerous regions
of India resulting in a total decline of 80-90% in tomato production (El Aimani er a/, 2021; Prasannakumar et
al, 2021). During a 7. absoluta outbreak, it consumed nearly all portions of the plant, ultimately resulting in
bacterial and fungal proliferation (Shahini er a/, 2021). The management of this pest has depended on the use of
chemical insecticides, resulting in a significant escalation in insecticide application. Excessive use of insecticides
and pesticides can lead to soil and water contamination (Narayanan and Ma, 2024) and ultimately impact human
health, resulting in various types of cancers (Mohan er af., 2024; Rajinikanth er a/,, 2024) and metabolic disorders

—® S
@ camam © 2025 by Author(s), Published by the Entomological Society of Iran
This Work is Licensed under Creative Commons Attribution-Non-Commercial 4.0 International Public License.


https://portal.issn.org/resource/ISSN/2783-3968
https://portal.issn.org/resource/ISSN/0259-9996
https://portal.issn.org/resource/ISSN/0259-9996
mailto:rmuthusamy.dr@gmail.com;%20bioscitecsol@gmail.com
mailto:rmuthusamy.dr@gmail.com;%20bioscitecsol@gmail.com
https://doi.org/10.22034/jesi.45.4.2
https://orcid.org/%200000-0002-2650-9791
https://orcid.org/0000-0001-7262-8428
https://orcid.org/0009-0005-2156-7238
https://orcid.org/0000-0002-2272-6414
https://orcid.org/0009-0006-1650-0538
https://orcid.org/0000-0002-9866-8397

500 Cross-resistance to various insecticides in Tuta absoluta. ..

(Mani er al., 2024). Due to the continual and recurrent use of synthetic insecticides, 7. absoluta has developed
resistance to these chemical insecticides (Ong'onge er al,, 2023; Narayanan & Prabhu, 2025).

Insects can acquire resistance to chemical pesticides via several mechanisms, including metabolic enzyme
resistance, changed target site insensitivity due to particular mutations, and penetration and behavioral resistance.
Notably, excessive protein production due to the elevated expression of one or more metabolic enzymes has been
shown (Ye er al,, 2022). Numerous bioactive compounds obtained from plants (Parveen er al., 2025b) and marine
algae (Narayanan & Rajinikanth, 2025) exhibit considerable pest management and medicinal potential (Mani et
al., 2024; Narayanan, 2024). It is essential to address insect resistance through an integrated resistance
management approach that incorporates the rotation of insecticides with varying modes of action and the
application of specific enzyme synergists with insecticides (Kadry er a/., 2025; Yin er al,, 2019).

Chlorantraniliprole is a novel diamide and member of the 28" group of insecticides, functioning as a
ryanodine receptor modulator (Kim er al, 2025). It induces paralysis in insect muscles by triggering the
uncontrolled release of internally held calcium ions (Ca*), ultimately leading to the insect's demise (Lai & Su,
2011; Radhakrishnan & Narayanan, 2025). It serves as a crucial instrument in integrated pest management (IPM)
because of its minimal toxicity to mammals and beneficial creatures, and no cross-resistance has been documented
with other insecticides (Campos er al., 2014). In recent decades, findings indicate that lepidopteran insects have
evolved resistance to chlorantraniliprole insecticide (He er a/, 2019). This work examined the potential
mechanisms of chlorantraniliprole resistance in 7. absoluta, both with and without synergist combinations, as well
as its cross-resistance patterns to different insecticides. The expression levels of cytochrome P450 resistance genes
were analyzed using qRT-PCR.

Materials and methods
Insect culture

T. absoluta susceptible populations (SS) were received from ICAR (Indian Institute of Horticulture Research),
Crop Protection Division, Bangalore, Karnataka, India. This population was initially collected from a tomato field
in Bangalore and preserved in insectariums for 12 generations without exposure to any chemicals. The
chlorantraniliprole-resistant (TN-R G7) strain was derived from field-collected populations in Hosur, Tamil
Nadu, India. First-generation (F1) larvae derived from field populations were subjected to chlorantraniliprole
selection with six different concentrations (ranging from 0.1-10ppm). The LCs determined for each generation
was based on the probit response of the previous generation bioassay. Approximately 300 to 700 larvae were used
for each generation. Both the susceptible (SS) and resistant (TN-R G7) 7. absoluta were maintained in the insect
rearing room at controlled temperature (26+1°C) with relative humidity of 70+5°C and 12:12 light and dark
photoperiod conditions.

Insecticides and chemicals

The chemical and bio-insecticides used in this study were commercially formulated. Chlorantraniliprole 18.5%
SC (DuPont), indoxacarb 14.5% SC (Syngenta), flubendiamide 39.35% SC (Bayer Crop Science), fipronil 5%
SC (Bayer crop Science), cypermethrin 25% EC (Syngenta), imidacloprid 30.5% SC (Syngenta), esfenvalerate
10% SC (Bayer Crop Science), chlorpyrifos 50% EC (Syngenta), methomyl 35% SC (Syngenta), chlorfluazuron
5.4% EC (Bayer Crop Science), spinosad 45% SC (Dow Agro Science), emamectin 5% SG and abamectin 5%
SG (Syngenta). These chemical insecticides affect the nerve and muscular function of several insect groups
classified under IRAC major groups 1, 2, 3, 5, and 6. The synergists PBO, DEM, TPP and other compounds

were procured from Himedia chemicals.
Toxicity bioassay

During the 2™ instar, 7. absoluta larvae were used for the leaf dip toxicity bioassay Chlorantraniliprole was
prepared in ppm concentration with six dosages in distilled water. Uniformly sized (6x6 cm in diameter) healthy,
fresh and young tomato leaves were submerged in insecticide solutions for 15 seconds and subsequently air-dried
for 20 minutes at 26-28°C. Moistened cotton pieces were placed in a bioassay container during each treatment to
preserve the freshness of the leaves. Leaves immersed solely in deionized water served as controls. Larvae were
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deemed deceased when they failed to respond to physical perturbation, with mortality reported at 48 hours post-
treatment.

Chlorantraniliprole synergism

Synergism bioassays were conducted using 2™ instar larvae from both susceptible and resistant populations of
chlorantraniliprole, employing the insecticide chlorantraniliprole in conjunction with PBO, DEM, and TPP to
identify potential metabolic pathways associated with resistance. The bioassay method utilized in the synergism
investigation resembled the IRAC approach; however, all larvae were topically administered 0.5pl of 15mM of
each synergist one hour prior to exposure to chlorantraniliprole. All experiments were conducted in triplicate to
reduce error.

Cross-resistance pattern

To detect the potential range of chlorantraniliprole cross-resistance, 2™ instar larvae were subjected to
concentration mortality bioassays utilizing indoxacarb, fipronil, cypermethrin, imidacloprid, chlorpyrifos,
esfenvalerate, methomyl, chlorfluazuron, spinosad, abamectin, emamectin, and flubendiamide. The bioassay
approach employed was that previously delineated for leaf dip bioassay (Muthusamy er al,, 2024).

Detoxification inhibitory study
Enzyme preparation

Approximately, thirty early 3 instars, both resistant and susceptible larvae, were subjected to starvation at 7 hours
under cold conditions. Homogenates of larvae were prepared in 50ml of pre-chilled buffer saline (PBS, pH-7.0)
with ImM of each Ethylenediaminetetraacetic acid (EDTA), 1-4-dithiotheritol (DTT), phenyl-thiourea (PTU),
and phenyl methyl-sulfonyl-fluoride (PMSF). The extract was separated by centrifugation at 15,000xg for 30
minutes at 4°C. The finished sample was refrigerated until it was utilized for enzyme activity analysis. Protein
quantification was performed with a standard substrate (Bovine Serum Albumin) in accordance with the standard
Lowry method.

Detoxification enzyme assay
Esterase activity

The esterase activity was measured according to the methodology of Lokeshwari er a/. (2016). The overall reaction
volume of 6.0ml comprises 990 pl of phosphate-buffered saline (40 mM, pH 6.8), 10 pl of resistant and susceptible
enzyme sample (with and without synergist), and 4000pl of 30mM a-naphthyl acetate diluted in 1ml acetone
solvent. The reaction mixtures were gently agitated and incubated at 37°C for 15 minutes in the absence of light.
Finally, 1.0 ml of staining solution (1% fast blue BB salt and 5% SDS) was added, and the dark color changes
were measured calorimetrically at 590nm. The specific activity of esterase was calculated using standard values of

a-naphthyl acetate and expressed as pmole/min/mg of protein.
Glutathione S-transferase activity

The GST activity was quantified using the conjugation of CDNB according to the method of Kao er al. (Kao er
al., 1989). The total volume of the reaction tube was 3ml, comprising 0.05ml of 2,4 dichloronitrobenzene
(50mM), 0.01ml of enzyme extracts, 0.15ml of GSH (glutathione reduced form), and 2.79ml of 100mM buffer
saline (PBS, pH-6.0). The reaction tubes were placed on ice for 5 minutes and the enzyme activities were measured
at 340nm and expressed as pmole/min/mg of protein.

Mixed-function oxidase activity

MFO activity was measured according to Fouad er al (2022) with slight modifications (Fouad er a/, 2022). 500
pl of 2 mM pnitroanisole with 450 pL enzyme stock solutions from resistant and susceptible populations were
added to the reaction tube and mixed. After incubation for 2 min at 27°C, 50 pL of 9.6 mM NADPH was added
to initiate the reaction. The activity of MFO was measured immediately at 405nm for 15 min and expressed as
pmole/min/mg of protein. A standard curve of p-nitrophenol was used to calculate MFO activity.

P450s mRNA expression
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The mRNA expression of nine resistant cytochrome P450 genes (CYP3, CYP4, and CYP6) was examined in
laboratory-selected 7. absoluta. Total RNA was isolated from third-instar larvae of each population utilizing the
QIAwave RNA Mini Kit (Qiagen, India) in accordance with the manufacturer's instructions. M—MLYV reverse
transcriptase (Promega, India) was employed to synthesize the first strand of cDNA. The gene-specific primers
employed in this study were derived from prior literature (Table 1). The qRT-PCR analysis was performed
according to the procedure outlined in our prior study (Muthusamy & Shivakumar, 2015). Using EF-1a as a

housekeeping gene, the relative gene expression levels in resistant and susceptible strains were quantified using the
22T method.

Statistical analysis

The LCs, together with its confidence interval and chi-square (x*) values, was calculated by probit analysis using
SPSS statistical software package. All percentage mortality data were corrected using Abbott’s formula. Resistant
ratios (RR) from the larval bioassay were calculated by dividing the resistant population lethal value by the
susceptible population lethal value. Synergism ratios (SR) were elucidated by dividing the insecticide lethal value
alone, and the insecticide synergist combination. The data produced from enzyme activity was evaluated using the
Bonferroni multiple comparison post-hoc test, whereas gene expression was assessed by column statistics. Notable
discrepancies in enzyme activity and gene expression were deemed significant at p<0.05 using PRISM-Graph Pad
(Version 5.0).

Results
Resistance selection

The chlorantraniliprole resistance assay indicated an LCso value of 7.03 ppm for the field-collected F1 population.
After seven generations of in-vitro selection (TN-R), a concentration of 36.54 ppm was observed, corresponding
to a resistance ratio of 31.7-fold relative to the laboratory (SS) population, and a 5.19-fold resistance ratio was
noted versus the unselected field population, respectively (Table 2).

Synergism of chlorantraniliprole

The synergism ratios of PBO, DEM, and TPP against resistant populations were 2.87, 1.16, and 3.19ppm
(*P<0.05), while lower synergism ratios were found in susceptible populations at 1.3, 1.2, and 1.0ppm (Table 3).
The synergistic effect of PBO and TPP exceeded that of the susceptible strain, indicating a potential involvement
of metabolic enzymes in chlorantraniliprole resistance.

Table 1. qRT-PCR primers used in this study

Genes Accession number Primer sequences (F/R) (5'-3") Amplicons Length (bp)

EF-1a GACAAACGTACCATCGAGAAG 279

(U20129) GATACCAGCCTCGAACTCAC

CYP321A7 AAAACAACCCCAAGACCCGT 101

(KC789750.1) TGAGTTCGTTCCAATGCCGA

CYP321A9 GACCCAGAAGTGTTCGACCC 125

(KC789752.1) TGCACTTGTAGCTTGGCGTA

CYP321B1 TACGGAGGGAAGCTGACGTA 125

(KC789754.1) ACAGAGTCTTCCACGCACTG

CYPGAE43 TGCCTTCGGAGTGGAGTCTA 127

(KJ671575.1) TGGCCATGCAGCTCTACAAA

CYP6B6 (Ortholog) TTGAAGAAAGGCGTATGAAA 232

(KM577332) ACACGCAAGATACACAAAGG

CYP6B47 ACTTCACCTTGTCTCCTTATCCGA 245

(GQ465039.2) AAAGCTGTCCATGTTTCTCCATC

CYP4M21 TGAGCAGACGCGCGATGT 149

(EU189049) CACCATATCCTCGGAGCTGC

CYP4C71 CCGCCACCCATTCGCCTATG 329

(JX876506.1) CTTCACCTTCACGCCACTCTCC

CYP4G74 CCCGGACCTGCCATTATACC 121
(KC789745.1) ACACTCTGACTACGTTGCCG
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Table 2. Toxicity of chlorantraniliprole against field and susceptible population of 7. absoluta

Population LCso0 (95% CI ppm) * Slope (+SE) Df X RR on (F1) RRon (F7)
Field (F1) 7.03 (6.24-8.73) 2.84 (0.21) 3 1.30 - 6.1
TN-R G7 36.54 (35.93-37.48) 3.24(0.32) 3 2.12 5.19 31.7

SS 1.15 (0.37-2.42) 1.38 (1.22) 3 1.11 - -

LCso, lethal concentration that kills 50% of the test animal; ppm, parts per million; CI, confidence interval; X%, chi-square; RR, Resistant ratio; df,
degree of freedom done by probit analysis.

Chlorantraniliprole cross-resistance pattern

The concentration mortality test for twelve different insecticides targeting field-evolved resistant populations and
susceptible populations was conducted to identify potential cross-resistance. The increased LCso obtained for
cypermethrin, chlorpyrifos, and esfenvalerate insecticides were 10.53, 15.44, and 13.42 ppm. Among tested
insecticides, only the abamectin and emamectin showed less cross-resistance (RR-0.9), whereas higher resistance

was observed for cypermethrin (3.3-fold), chlorpyrifos (6.0-fold), and spinosad (6.0-fold) Table 4.
The activity of detoxification enzymes

The activities of esterase, glutathione S-transferase, and mixed-function oxidase were assessed in the
chlorantraniliprole-resistant and susceptible populations following seven generations of selection to discover the
enzymes implicated in potential resistance to chlorantraniliprole. Esterase activity was elevated in the resistant field
(25pmole/mg protein/min) population compared to susceptible population 11umole/mg protein/min (Fig. 1).
Similarly, GST activity in the resistant group was slightly increased (20pmole/mg protein/min) as compared to
susceptible one 10pmole/mg protein/min (Fig. 2) with no significant differences in the enzyme activity (1.0 and
1.5-fold). Next, MFO activity was significantly higher in the 3" instar larvae from the TN-R G7 population
(31pmole/mg protein/min) than the (SS) susceptible population (10 pmole/mg protein/min), which is 2.5-fold
increased activity P<0.001 (Fig. 3). This indicates the possible role of P450 conferring chlorantraniliprole
resistance in the TN-R G7 population.
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Fig. 1. Esterase activity in resistant and susceptible populations of 7~ absoluta. The bar represents the mean, standard deviation
(£SD) of enzyme value. Asterisk* shows increased activity in resistant populations compared to susceptible (*P<0.05).
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Fig. 2. Glutathione S-transferase activity in resistant and susceptible populations of 7~ absoluta. The bar represents the mean,

standard deviation (+SD) of enzyme value. Asterisk* shows increased activity in resistant populations compared to susceptible
ones (*P<0.05).
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Fig. 3. Mixed function oxidase activity in resistant and susceptible populations of 7. absoluta. The bar represents the mean,

standard deviation (+SD) of enzyme value. Asterisks** show increased activity in resistant populations compared to the
susceptible (*P<0.001).

Journal of Entomological Society of Iran 2025 ¢+ 45 (4)



Muthusamy et al. 505

Table 3. Toxicity of chlorantraniliprole in combination with different synergists against resistant and
susceptible 7 absoluta

Populations Treatments LCs0(95% CI ppm)* Slope (+SE) X2 SR

TN-R G7 Chlorantraniliprole 36.54 (35.93-37.48) 1.43 (0.43) 0.31 -
Chlorantraniliprole + PBO 12.73 (11.06-13.94) 2.42 (0.53) 1.32 2.87
Chlorantraniliprole + DEM 31.32 (30.38-32.93) 1.43 (0.26) 2.12 1.16
Chlorantraniliprole + TPP 11.43 (10.58-12.49) 1.33 (0.73) 0.43 3.19*

SS Chlorantraniliprole 1.15 (0.37-2.42) 2.31(1.31) 1.64 =
Chlorantraniliprole + PBO 0.84 (0.21-0.98) 1.42 (0.48) 1.53 1.36
Chlorantraniliprole + DEM 0.92 (0.44-1.31) 1.31 (0.21) 0.43 1.25
Chlorantraniliprole + TPP 0.68 (0.22-0.87) 1.11 (0.32) 1.32 1.03

LCso, lethal concentration that kills 50% of the test animal; ppm, parts per million; CI, confidence interval; X2, chi-square; SR, Synergism ratio; *
Indicates significant in synergism ratio between field and susceptible population (Tukey’s multiple range test at 2 < 0.05).

Expression profile of Cytochrome P450 genes

The expression levels of nine cytochrome P450 genes exhibited substantial differences between the resistant and
susceptible populations (Fig.4). The expression levels of CYP321A9 and CYP6B6 were significantly elevated in
TN-R (4.4 and 5.6-fold), followed by CYP321A7 (3.2-fold), CYP6B47 (5.1-fold), CYP4M21 (2.3-fold), and
CYP4C71 (2.0-fold), as illustrated in Fig.4.

Discussion

Insecticide resistance poses a significant challenge in newly invasive pest species such as 7. absolura. The persistent
and recurrent use of pesticides in agricultural management has resulted in the development of resistance and may
induce cross-resistance to other classes of insecticides (Dominguez er al, 2019). Consequently, meticulous
assessment of insecticide resistance and its cross-resistance to other insecticides is an important tool for monitoring
the resistance and integrated management program (Kadry er a/, 2025; Narayanan, 2025; Tarusikirwa er al,
2020). This research focused on the toxicity of broad-spectrum diamide insecticide against the field-collected
resistance population of 7 absoluta under in-vitro conditions.

CYP321A7
CYP321A9
CYP321B1
CYPGAEA43
CYP6B6 (Ortholog)
CYP6B47
CYP4M21
CYP4CT71
CYP4G74

Fold change expression

Populations

Fig. 4. Relative gene expression level of selected P450s in resistant and susceptible populations of 7. absoluta (column statistics
*P < 0.05). The error bars represent the standard deviation (n = 3).
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Table 4. Cross-resistance to selective insecticides in chlorantraniliprole-resistant and susceptible strains

Strains Insecticides LGCs0 (95% CI ppm)* Slope (+SE) df X2 RR

TN-R G7 Indoxacarb 2.42 (1.31-3.62) 1.31 (0.32) 4 2.11 1.0
Fipronil 4.53 (3.24-5.63) 2.42 (0.24) 3 1.31 1.5
Cypermethrin 10.53 (8.94-11.24) 1.53 (0.66) 3 3.13 3.3
Imidacloprid 3.53 (2.42-4.57) 0.53 (0.44) 4 2.11 3.1
Chlorpyrifos 15.44 (14.53-13.53) 0.78 (0.14) 3 1.52 6.0
Esfenvalerate 13.42 (12.44-14.09) 1.39 (1.40) 3 2.24 2.8
Methomyl 4.65 (3.12-5.93) 0.94 (0.21) 3 1.56 1.8
Chlorfluazuron 2.43 (1.31-3.45) 2.53 (1.53) 3 2.53 1.2
Spinosad 2.54 (1.43-3.53) 1.55 (0.27) 3 3.42 6.0
Abamectin 1.11 (0.42-1.93) 2.75 (0.64) 3 1.53 0.9
Emamectin 1.49 (0.38-2.10) 1.77 (0.23) 3 2.42 0.9
Flubendiamide 3.92 (2.01-4.29) 1.34 (0.13) 3 1.13 2.3

SS Indoxacarb 2.41 (1.31-3.56) 1.66 (0.65) 4 1.64 -
Fipronil 2.92 (1.21-3.85) 2.55(1.01) 3 2.64 -
Cypermethrin 3.15 (2.64-4.55) 2.74(0.13) 3 2.53 -
Imidacloprid 1.13 (0.25-2.40) 1.79 (0.22) 4 1.66 -
CRISEpyifs 2.57 (1.65-3.74) 299(150) 3 2.75 -
Esfenvalerate 4.64 (3.53-5.32) 1.30 (0.52) 3 1.86 -
Methomyl 2.54 (1.31-3.23) 1.45 (0.87) 3 3.54 -
Chlorfluazuron 1.93 (0.23-2.14) 2.09 (1.39) 3 2.66 -
Spinosad 0.42 (0.13-1.31) 1.62 (0.66) 3 1.86 -
Abamectin 1.13 (0.42-2.43) 0.69 (0.96) 3 3.56 -
Emamectin 1.53 (0.8-2.24) 1.43 (0.34) 3 2.22 -
Flubendiamide 1.64 (0.42-2.53) 2.21(1.79) 3 1.44 -

LCso, lethal concentration that kills 50% of the test animal; ppm, parts per million; CI, confidence interval; X2, chi-square; RR, Resistant ratio; df,
degree of freedom done by probit analysis.

Our findings demonstrated significant resistance to chlorantraniliprole selection in field field-evolved population
(RR 31.7-fold) relative to the susceptible group. Comparable investigations indicated a resistance ratio of 14-fold
for chlorantraniliprole and 11-fold for flubendiamide in several field populations of 7. absoluta (Parveen et al.,
2025a; Roditakis er af., 2015). Subsequently, field control failure was reported in the Italian and Greek populations
of T. absoluta, followed by the Israeli population (> 64-fold and 22,573-fold) (Roditakis er a/, 2018). Zhang et
al. (2025) also reported 24.66-fold resistance in the Chinese field population of 7uta absolura upon
chlorantraniliprole treatment (Vijayakumarr eral, 2025; Zhang et al., 2025). The emergence of elevated resistance
levels in these field populations to chlorantraniliprole may result from intensified selection pressure in natural
environments relative to laboratory conditions, as well as the heterogeneous composition of the population.

The possibility of cross-resistance to multiple pesticides is a significant challenge in restricting the available
options for pest management. The current study indicates that the cross-resistance in chlorantraniliprole-selected
T. absoluta seems limited to abamectin and emamectin (a GABA-gated chloride channel allosteric modulators)
and moderate to high cross-resistance to flubendiamide (a ryanodine receptors activator) 2.3-fold, followed by
spinosad, chlorpyrifos, cypermethrin, imidacloprid, and esfenvalerate (6.0, 3.3, 3.1, and 2.8), which primarily
affect sodium channels and target nicotinic acetylcholine receptors. This result indicated that pesticides with
analogous modes of action exhibit cross-resistance, while others contribute minimally. Silva er a (2016) reported
analogous findings in Brazilian populations with a resistance ratio ranging from 1.0 to 288,995-fold between
cyantraniliprole and flubendiamide insecticides (Silva er al., 2016). Campos er al. (2014) reported limited cross-
resistance in spinosad-selected 7. absoluta to the similar classes of insecticide (Campos er al., 2014). Venkatesan
et al., (2022) documented minimal cross-resistance to buprofezin, pyriproxyfen, and spinosad in Chrysoperla
carnea under acetamiprid selection study and also reported very low cross-resistance to abamectin and emamectin
(0.9-fold) in 7. absoluta under diamide selection (Venkatesan er al, 2022). Ismail (2021) reported that emamectin
benzoate was found to be effective against the lepidopteran pest Agrodis ipsilon, which can be used as an alternative
to the conventional insecticide for field control (Ismail, 2021).

Esterase, P450, and, to some lesser extent, GST have been reported to be involved in the metabolic resistance
to organophosphate, carbamate, pyrethroid, and newer classes of insecticides in many insect species (Bosch-Serra
et al., 2021; Muthusamy er al., 2013; Ye er al., 2022). Chlorantraniliprole is a broad-spectrum insecticide utilized
for the management of several insect species, particularly in the field control of 7. absoluta; nevertheless, the
metabolic enzymes and resistance mechanisms present in the Indian field population of 7. absoluta remain
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inadequately understood (Ramkumar er af, 2023). The findings of the current investigation indicated elevated
activity of esterase, glutathione S-transferase, and mixed-function oxidase in the chlorantraniliprole-resistant (TN-
R) group relative to the laboratory susceptible (SS) population. This finding correlated with the results of PBO
and TPP synergist bioassay on chlorantraniliprole resistance 7. absoluta, suggesting the possible mechanism of
P450 and, to some lesser extent, esterase metabolic enzymes in diamide resistance. The synergism by PBO and
TPP in resistance to 7 absoluta may lead to the inhibition of P450 and esterase enzymes involved in the rendering
of toxic chemicals into less toxic by phase I and II detoxification process by hydrolysis or oxidation of these enzymes
(Esteves et al., 2021). Ma et al. (2024) reported diamide resistance in the WZ field population than susceptible
reference strain YN-S (Ma er al, 2024). Sun er al. (2018) published similar findings, indicating a 38.8-fold
resistance ratio in the chlorantraniliprole laboratory resistant strain (R1) of Chilo suppressalis (Sun et al., 2018).
The potential mechanism of deltamethrin resistance in Cimex lectulariusL. (common bed bug) is linked to esterase
and GST metabolic resistance, enhanced by PBO and DEM synergism (Gonzalez-Morales & Romero, 2019).
Gong er al. (2021) reported increased activity of CarE, GST, and P450 in M. dirhodum aphids subjected to
imidacloprid pesticide, with a 20-fold PBO synergistic effect (Gong et al., 2021).

The analysis of the cytP450 resistance gene in the TN-R population revealed elevated mRNA expression
relative to the susceptible group. Out of nine cytP450 genes, CYP321A9, CYP6B6, CYP321A7, and CYP6B47
showed high expression by chlorantraniliprole selection. Ullah er a/ (2025) also reported increased expression of
cytochrome P450 mRNA level of CYP321C40, followed by CYP4M116, CYP6AW1, CYP339Al1, and
CYP6AB327 in the SpRS 7. absoluta (Ullah er al., 2025). Earlier studies by Shi er a/. (2018) found that members
of the CYPGAE subfamily may efficiently transform fenvalerate into 4 -hydroxy fenvalerate (Shi er al, 2018).
Elevated expression levels of the detoxifying genes CYP6FUI and CYP439A1v3 in L. striatellus are correlated
with resistance to deltamethrin. Similarly, the overexpression of multiple P450 enzymes has been linked to
pyrethroid resistance in H. armigera, Ae. aegypti, and Ae. Albopictus (Wan er al., 2021; Xiao er al., 2020; Zhao
et al., 2021). Hafeez er al. (2022) also documented the upregulation of P450 genes in indoxacarb resistance S.
frugiperda (Hafeez er al, 2022). Yang er al. (2021) reported a high level of permethrin resistance in Cx.
quinquefasciatus mosquitoes (Yang ez al,, 2021). The prior work by Matowo er al. (2022) indicated that CYP6M2,
CYP6Z3, CYP6P3, CYP6P4, CYPG6AAL, and CYPIKI exhibited elevated expression in pyrethroid-resistant
Anopheles gambiae (Matowo er al., 2022).

conclusion

The current study's data indicate a potential for chlorantraniliprole resistance in 7. absoluta under laboratory
selection. In vitro synergism with PBO and TPP demonstrated the role of esterase and P450-mediated metabolic
resistance, while the overexpression of nine P450 genes suggested their involvement in chlorantraniliprole
resistance. Moreover, there exists a moderate to low likelihood of cross-resistance to other kinds of insecticides,
with no cross-resistance detected to emamectin and abamectin insecticides. This information will facilitate the
efficient management of diamide resistance in 7. absolura.
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