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Evaluation of metaheuristic algorithms in detecting the spatial distribution
of the tomato fruit worm, Helicoverpa armigera (Lep., Noctuidae)
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Abstract. This study aimed to predict the spatial distribution of the tomato
fruieworm Helicoverpa armigera (Lep: Noctuidae) population using an artificial
neural network optimized with ant and artificial honeybee colony algorithms. Data
on the population density of this pest were collected in a 2000 m2 tomato field
located at geographical coordinates 38S, 693942E, and 3800263N. In these
models, latitude and longitude variables were used as input variables, and
population changes in tomato fruitworm larvae of different ages were used as
output variables. The network used was a multilayer perceptron optimized using
two metaheuristic algorithms. To evaluate the accuracy of the neural networks used
to predict the spatial distribution of this pest, an average comparison was made
between the spatially predicted values by the optimized neural network and their
actual values. A comparison of the means showed no significant difference between
the actual and predicted spatial datasets in the training and testing phases. A 4 . .16
coefficient of determination of 0.9987 indicated that the neural network optimized Received: 20 January 2025
with the artificial honey bee colony algorithm achieved a higher accuracy than the Accepted: 04 December 2025
ant colony algorithm, with a coefficient of determination of 0.9911 for predicting Published: 14 January 2026
the density of H. armigera moths. In addition, maps drawn by the neural network .\ Eicor. Abbas Ali Zamani

optimized with both metaheuristic algorithms showed that the spatial distribution Corresponding author: Maryam Aleosfoor

of this pest was cumulative.
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Introduction

Tomato, scientifically known as (Lycopersicon esculentum Mill), is one of the most widely consumed vegetables
worldwide. In Iran, it ranks among the major vegetable crops and accounts for about 41.6% of the total vegetable
production. The area under cultivation of this crop has been steadily expanding, and in 2023-2024, more than
130,000 hectares were allocated to tomato farming, resulting in an estimated yield of 5,049,910 tonnes (Ahmadi
et al., 2022). Despite its importance, tomato production is continuously threatened by various pests that reduce
both yield and quality. Among them, the tomato fruit worm Helicoverpa armigera (Hubner) (Lep: Noctuidae) is
recognized as one of the most destructive species. This pest has become a major concern for tomato producers in
Iran and many other countries due to its increasing economic impact (Guo et al,, 2020; Singla & Singh, 2020).
H. armigera feeds on the vegetative and reproductive structures of host plants, such as stems, leaves, flowers, and
fruit, during various larval stages (Liu et a/, 2004). Their strong preference for reproductive organs makes them
especially damaging to crop yield. Early instar larvae typically feed on leaves near the oviposition site, whereas later
instars move to reproductive structures such as flowers and fruits (Liu ez a/, 2007).

The greatest damage to crops is caused by older larvae. In tomatoes, unripe fruits are attacked early in the
season, and secondary infection by microorganisms leads to fruit rot, ultimately causing serious damage and a
significant reduction in yield (Diatte er al, 2017; Sousa et al., 2021). The costs associated with yield reduction and
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control of this pest in tomato crops in Asia, Europe, and Africa are estimated to be approximately five billion
dollars (Jones er al., 2019).

Farmers typically rely heavily on chemical pesticides to control the tomato fruit worm (Vivan er al, 2016).
However, repeated use of these pesticides has not only led to resistance development but also caused environmental
pollution and significantly increased production costs. Therefore, the use of integrated management is essential to
prevent the improper application of pesticides (Fite & Tefera, 2022). To develop integrated management
programs, knowledge of its population changes on farms over time (Garzia et al, 2011). Generally, for providing
more efficient and accurate information when examining pest population trends and, consequently, ensuring
timely pesticide application, innovative on-farm methods can be used to generate more realistic estimates at lower
cost and in less time. Multiple studies have shown that artificial neural networks (ANNG) are highly capable of
recognizing spatial distribution patterns of ecological populations (Irmak er a/, 2006). An artificial neural network
is an artificial intelligence tool used for studying the spatial and temporal dynamics of pest populations. For
example, a study developed a prediction system for a system for predicting the risk level of western flower thrips
using artificial neural networks and an adaptive neuro-fuzzy inference system. The numerical results demonstrated
strong performance of both models, confirming their efficiency in pest monitoring (Tay er al., 2023). Artificial
neural networks have also been used as a tool for seasonal prediction of Spodoptera spp. attack intensity in soybean
fields. The selected artificial neural network incorporated weather data from 25 days before the pest density
assessment. The prediction of the artificial neural network and pest density in soybean fields showed a correlation
of 0.863 (de Franca er al, 2024).

Heuristic search optimization methods are typically used to minimize errors in these networks; however, such
methods may cause the network to become stuck in local optima, thereby limiting its overall performance.
Therefore, it is necessary to utilize metaheuristic algorithms to provide better solutions or to achieve near-optimal
values for optimization problems in neural networks. Metaheuristic algorithms offer three categories of solutions—
near-optimal, optimal, and best—depending on real-world application areas (Alfa er a/, 2020). The Artificial Bee
Colony (ABC) optimization algorithm and the Ant Colony Optimization (ACO) algorithm are two well-known
metaheuristic algorithms. The Ant Colony algorithm is an optimization method inspired by the foraging
behaviour of natural ant colonies. The Artificial Bee Colony algorithm, introduced by Karaboga, is inspired by
the food foraging behavior of honey bees (Karaboga, 2005). These two approaches are highly effective because
they can address a wide range of optimization challenges and employ randomized processes that improve the
likelihood of reaching the global optimum. Furthermore, they are specifically tailored to boost the performance
of artificial neural networks. Ant colony and bee colony algorithms have the potential to significantly enhance the
effectiveness and efficiency of the training process, particularly when dealing with complex and high-dimensional
datasets. The primary objective of these algorithms is to address the shortcomings of heuristic search methods and
enhance the efficiency of weight optimization within artificial neural networks (Lamjiak er a/, 2024; Socha &
Blum, 2007). As a result, they expand the search efficiency of neural networks, improving the likelihood of
achieving optimal solutions in complex problems. The application of these two algorithms is widespread and plays
a significant role in almost all fields, including engineering, industry, and agriculture. Owing to their priority and
superiority over other competitive optimization algorithms, these algorithms are widely preferred (Bourhis er af,
2021).

However, no comprehensive and systematic research has been conducted using Ant Colony and Artificial
Bee Colony algorithms to estimate pest dispersion in farms. Therefore, this study examined the performance of
two nature-inspired algorithms, namely the Artificial Bee Colony Optimization algorithm and the Ant Colony
Optimization algorithm, to determine the dispersion pattern of the tomato fruit worm population across the farm.
Network-derived maps provide a basis for the precise and judicious application of chemical pesticides, leading to
more effective and sustainable pest management in tomato cultivation. Therefore, there is hope that the optimized
artificial neural network can be integrated in integrated pest management programmes on tomato farms.

Materials and methods

Geographic location and sampling method
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For this research, a plot of land covering about 2,000 square meters was chosen, located at the geographical
coordinates (38S, 693942E, 3800263N). Tomato seedlings of the Karoon variety were planted at the site. The
field was organized into 32 rows, each spaced 150 cm apart, with a distance of 40 cm between the plants within
each row and 110 plants were planted per row. Pest population fluctuations were monitored every five days using
a systematic sampling pattern, counting H. armigera larvae at different developmental stages on plants numbered
5, 13, 21, and 29 within rows 2, 5, and 8. No pesticide was applied to maintain its natural spatial distribution.
All planting, cultivation, and harvesting activities were conducted uniformly across all rows to ensure consistency
in operations.

Data preprocessing

Data normalization, also known as data preprocessing, is a critical step for improving the performance of neural
networks. This process, usually carried out before training the network, involves transforming the input data to
enhance their clarity and usability for the model (Zou er al, 2009). Data normalization can be achieved using
various methods, with min-max normalization being one of the most widely used approaches. This method
involves transforming the feature values into a range typically between 0 and 1. The scaling process, known as
min-max normalization, is mathematically expressed in Equation (1).

X—Xmin (1)

X ,
normalized=
Xmax— Xmin

In the given expression, X represents the value of a random feature that requires normalization. In addition,
Xmin a0d Xmax denote to the minimum and maximum values of the desired feature, respectively.

Perceptron neural networks

Multilayer perceptron neural networks are composed of one or more intermediate layers, where the input signals
are initially standardized using normalization coefficients. Once the necessary calculations are completed, the final
result is mapped back to the actual values (Wu & Feng, 2018). The calculated output values were compared with
the actual values, and the error rate was determined. If the error rate differed from the predetermined desired
value, the process returned to the previous step, the correlation coefficients were changed, and the calculations
were repeated. These networks utilize the error backpropagation algorithm as the foundation of their training
process (Novikov er al, 2015). Despite the overall success of the error backpropagation algorithm, it faces several
fundamental challenges. One of the prominent problems is the slow convergence of the algorithm. Additionally,
the success rate in convergence is strongly affected by the choice of initial values of the network weights, bias
vectors, and fine-tuning of parameters such as the learning rate (Zhang & Zhang, 2018) . To address the limitations
of this algorithm, metaheuristic algorithms are employed to enhance convergence speed and optimize network
weights Therefore, this study employs the Ant Colony Optimization algorithm and the Artificial Bee Colony
algorithm.

Artificial neural network architecture

In the process of designing the structure and architecture of a neural network, the number of elements in the input
vector is dictated by the specific nature of the problem under analysis and cannot be arbitrarily chosen. However,
aspects such as the number of hidden layers, quantity of neurons, connectivity between neurons, choice of
activation function, and number of iterations are entirely under the designer's control. Therefore, to enhance
performance, an optimal design of the neural network is essential (Desjardins er al,, 2015). A structured eight-step
process was implemented to determine the model parameters and refine the design for optimal performance
(Kaastra & Boyd, 1996). In this study, the optimized neural network employing the Ant Colony Optimization
(ACO) algorithm with eight hidden neurons and the Artificial Bee Colony (ABC) algorithm with six hidden
neurons demonstrated strong performance. The sigmoid function was used as the activation function in the
hidden layer, whereas a linear function was applied in the output layer. The total number of iterations
for all steps was fixed at 1500 to ensure computational stability and maintain accuracy (Fig. 1).

Optimizing neural network weights using the Ant colony algorithm
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The ant colony algorithm mimics the natural behavior of ants by employing simulated ants to navigate through a
graph, offering an effective method for problem-solving. The key advantage of this method over genetic algorithms
lies in its ability to handle dynamic graphs, allowing the ant algorithm to operate continuously and adapt to
changes in real time (Ebid er a/, 2024). The main steps include four important stages: 1- Determine the initial
values for ant colony parameters, such as the number of generations and the initial amount of pheromone 2-
Represent the features as nodes of a graph (in this step, a number of ants are created and randomly placed on the
nodes of the graph). Each ant starts with a random feature and then calculates the goodness of fit of all ants) 3-
All representative ants collaborate simultaneously to construct a new solution. During this process, the (K) ant is
randomly positioned on the (i) node (feature). From this starting point, ant k at node (i) chooses its next node (j)
based on the probabilistic criteria outlined in Equation (2).

( [t:5]" % [ni 17 2)
pi(i.j) = { ZuejkOltalnulf

0

Here, nij represents the exploration information, and Jk(i) refers to the collection of neighboring nodes of
node (i) that ant (K) has not yet visited. Parameters a and B are used to balance the significance of pheromones
relative to the exploration information, which is calculated calculated as shown in Equation (3).

_ 271\{:1 XniXnj 3)

Tlij =
N
/anlxnixnj

(N) represents the total number of training samples. Node (j) is added as equation (4):

j= {argmax uefi (D{[tu]® [nu]f} if 9 < qo (4)
Ji if > qo

where (q) represents a uniform random number between 0 and 1, (qo) serves as the threshold parameter, and
J € Jk(i) denotes the node that is selected randomly based on the associated probabilities.

Once the next node is chosen, a new subset of features is created, and the goodness-of-fit of the ant is
evaluated. The traversal process terminates when a stopping condition is satisfied (which may include reaching a
predefined number of selected features, observing no improvement upon adding a new feature, or detecting
negligible progress below a set threshold). 4- The fourth step focuses on updating the paths using pheromones.
After selecting the ant with the lowest squared error, indicating the best solution, the overall update process begins.
The only ant that succeeds in finding the best solution highlights a part of the optimal solution by increasing the
pheromone level along its path. This process directs the search towards the neighborhood of the best solution. The
update of this path is performed using Equations (5) and (6).

PAL;j + (1 = p)ty; = t;; (5)

(©)

if {ij}es”
At;j { Jmin
0 if {ijjes*
Parameter (p), where 0 < p < 1, regulates the rate of pheromone degradation.

The operation terminates when meeting the stopping condition; otherwise, it proceeds to restart at the second
step. It also stops if the default maximum solution is achieved and the comprehensive solution exhibits only minor
successive changes (Li er al.,, 2024).

Optimizing neural network weights using the artificial honey bee colony
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The artificial bee colony algorithm consists of three basic components: 1- worker bees, 2- non-worker bees, and
3- food resources. In this model, there are two behavior-guiding methods: recruiting new bees to explore rich food
resources upon receiving positive feedback and abandoning poor food resources when negative feedback is received
(Kiran & Findik, 2015). In the artificial bee algorithm, a colony consists of three groups of bees: 1- worker bees
associated with specific food sources 2- observer bees that monitor the selection of food sources, and 3- pioneer
bees that search for food sources randomly. Both observer and pioneer bees are called non-worker bees. Initially,
the forerunners identifiy the location of all available food sources. Once discovered, both forerunners and worker
bees extract nectar from these sources. Over time, persistent harvesting depletes resources. Consequently, the
worker bees transition into forerunners, restarting the cycle by searching for new food sources. In an artificial bee
colony, each potential solution to the optimization problem is represented by the location of a food source, and
the quantity of nectar at that source reflects the fitness of that specific solution. The population size matches the
number of worker or observer bees, ensuring that every bee is linked to a single food source. The algorithm begins
by generating an initial population of SN solutions, randomly distributed across potential food source locations.
Here, SN corresponds to the number of worker or observer bees, and each solution (Xi) is represented as a (D)
dimensional vector, with (D) denoting the number of optimization parameters. Within the framework of the
artificial bee colony algorithm, each primary iteration is composed of three key steps; 1. Worker bees are dispatched
to their respective food sources, where they evaluate the nectar quantity available. 2. Information about food
sources is shared within the colony, enabling observer bees to select specific areas and extract nectar from the newly
identified food sources for assessment. 3. Pioneer bees are then determined and sent randomly to explore potential
food source locations, further bolstering the search for optimal solutions (Karaboga et af., 2011 ). These steps are
repeated a specific number of times, referred to as the maximum number of repetitions. During this cycle, the
artificial observer bee chooses a food source based on the probability value (Pi) associated with it. This probability
is determined using Equation (7).

fitness (si) 7)
SN, fitness (sn)

Di

In this equation, fitness (Si) represents the fitness value of the solution (Si), reflecting the quantity of nectar
available at the food source located at the (i) position. Meanwhile, (Sn) denotes the total number of food sources,
corresponding to the number of worker or observer bees in the colony. To establish a new food location based on
the existing location stored in memory, the artificial bee colony uses the formula given in in Equation (8), as
follows:

vij = (xij = %) 05 + xy ®)
In the equation (8):

k€{1.2,....SN}, j €{1,2,...D}

Indices are selected randomly, with the condition that while k is chosen arbitrarily, its value is different from
(i). The parameter (0ij), determined as a random number within the range of -1 to 1, plays a pivotal role in
regulating the generation of neighboring food resources surrounding Xij. This equation demonstrates that as the
gap between (Hij) and (Xkj) narrows, the deviation from the initial point position decreases proportionally. As
the search progresses closer to the optimal solution, the step length gradually decreases. If any parameter surpasses
its permissible limit, it is modified to be within an acceptable range. By employing this approach, the pioneer bee
can identify a new food source using Equation (9).

xij = xjmi" + rand [0,1](x,£mx - xrjnm) 9)

Once the artificial bee generates and assesses the candidate source location (Vij), its efficiency is compared

with that of the previous location. If the new source contains an equal or greater amount of nectar than the
previous one, it replaces the earlier location in memory; otherwise, the prior location remains unchanged. In
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essence, this process reflects a greedy selection mechanism comparing the current and newly proposed locations

(Kaya er al., 2022).
Stopping condition

The total number of algorithm iterations for all algorithms was considered to be 1500 and if there was no
improvement in the fitness value after 400 iterations, the algorithms terminated. The neural network
implementation, along with the artificial ant and honeybee colony algorithm, was developed using MATLAB
version 24.2. Statistical comparisons were performed using SPSS version 21.

Results

To evaluate the ability of the trained neural network to predict the distribution pattern of /. armigera, a statistical
comparison was conducted between the actual data and the predictions generated by the neural network,
optimized using the artificial ant colony and honey bee algorithms. Here, the null hypothesis implies that the
means are equal. A t-test was used to compare the means. Table (1) shows the calculated P-values for both the ant
colony and artificial honey bee algorithms. The results indicate that the actual and predicted values by the neural
network combined with the ant colony and the artificial honey bee algorithms were not statistically significantly
different. The coefficients of explanation comparing the actual values from each sample with the predicted values
generated by the neural network combined with the ant colony algorithm are presented in Table 2, and those
derived from the artificial honey bee algorithm are displayed in Table 3. The findings indicate that the artificial
neural network, enhanced with the artificial honey bee algorithm, demonstrates superior generalizability in
estimating tomato fruitworm density under field conditions.

Spatial distribution maps of H. armigera using ant colony and artificial honey bee colony algorithms

A spatial distribution map of the tomato fruitworm was developed using an artificial neural network model. This
model was enhanced using optimization techniques involving the ant colony and artificial honey bee colony
algorithms, as illustrated in Fig. 2.

Discussion

Pests are widely regarded as a significant challenge and a major obstacle to improving the productivity of
agricultural crops and their effective management plays a vital role in maintaining crop health and increasing
yields. One major challenge in achieving effective pest management lies in the lack of comprehensive
understanding of the numerous factors that shape pest dynamics and behavior.

SLGETitEgees ABC Algorithm
input problem details n,f(),{6;:i=1,...,n}and {n;:i=1,..,n,je 6} Initialize operation;
WHILE ( (fter < AMaxrCyele))
input algorithm parameters a,p, 1o, p, m,and Q //Stage 1: Employed Bees
FOR (i = 1: (FoodNumber))
initialise pheromone t;,(l)=1pfori=1,...,nand jeb; Form a new food scurce;

Calculate the fitness of the new food source;

do for all iterations t=1,..., [y i e e

do for all ants k=1,..,m END FOR
Calculate the probability p;
set ant path S)=9© //Stage 2:0Onlocker Bees
- . L FOR (i = 1: (FoodNumber) )
do for all decision points i=1,..,n Eemminee 9 He Eein —eoammies
select edge (i, j), j& 6,according to (10) Onlooker bees find food sources depending on P;
Form a new food source;
add selected edge to ant path Syf) Evaluate the fitness of the new food source;
.. . Greedy selection:
end do for all decision points END FOR
end do for all ants //Stage 3:Scout Bees

IF(any employed bee turns to scout bee)

evaluate ASy) fork=1,...m Parameter p is set randomly;
update pheromone paths according to (11) and (12) The scout bees find food sources depending on p
end do for all iterations END IF
= 7 .= = Record the best solution;
output §=arg min{ f(S): 5" =Spe®s =1y 1w byas} Pricoitg ol
end algorithm ACO END WHILE

Fig. 1. Pseudocode for artificial bee colony (right side of the image) and ant colony algorithm (left side of the image)
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Table 1. Statistical comparisons between the observed and estimated to H. armigera by artificial neural network
optimized whit ant colony optimization and artificial bee colony algorithm

Date Sampling Compear mean ANN whit Ant colony Compear mean ANN whit Artificial bee colony
2019/07/17 0.78 0.54
2019/07/22 0.81 0.62
2019/07/27 0.73 0.76
2019/08/02 0.75 0.73
2019/08/07 0.78 0.73
2019/08/11 0.79 0.62
2019/08/16 0.80 0.68
2019/08/21 0.79 0.48
2019/08/27 0.89 0.74
2019/09/01 0.84 0.69
2019/09/06 0.80 0.71

This study explores the development of an intelligent system designed to effectively predict the population
dynamics of H. armigera in tomato fields, leveraging advanced techniques based on artificial neural networks.
Developing such a system not only deepens the understanding of this pest's behavior but also facilitates more
effective and efficient management strategies to control it. In this study, an artificial neural network optimized
with two artificial bee and ant colony algorithms was able to accurately determine the distribution pattern of H.
armigera and draw a map of the distribution of this species in the field. Based on the guide in Figure (2), the red
areas are the most contaminated areas of the field. The resulting maps also show the cumulative distribution of
this pest at different dates. These results were obtained based on data collected from a pilot field, during a planting
to harvest period. Our findings showed that combining neural networks with artificial ant and honeybee colony
algorithms can be used as an effective tool for predicting and managing /. armigera populations in farms. By
integrating a standard multilayer perceptron neural network with metaheuristic algorithms, we found that the
system delivers results with very high accuracy, making it an optimal choice for developing a pest prediction model.
These predictions can help farmers plan pest management, leading to reduced crop losses and less pesticide use.
As a result, such an approach will reduce environmental pollution. Once the input variables are known, they can
be loaded into the aforementioned models to predict the population of this pest and this allowing for timely and
effective control strategies to be deployed, such as utilizing biological or chemical pesticides, based on threshold
values. This study's findings align closely with those of earlier research. For instance, one such study focused on
developing a system to predict the risk level of western flower thrips (Frankliniella occidentalis) in rose
greenhouses. Using artificial neural networks and an adaptive neurofuzzy inference system (ANFIS), the study
demonstrated the remarkable effectiveness of these two networks in tracking and monitoring western flower thrips
(Tay et al., 2023). Also, in a study that compared the performance of an optimized artificial neural network with
the colonial competition algorithm and the mixed frog mutation to predict the distribution pattern of the seven-
spotted ladybird (Coccinella septempunctata) in a hay field in Zarqan County, the results showed that the mixed
frog mutation algorithm had higher accuracy than the colonial competition algorithm in detecting the distribution
of this predator (Mohammadi & Aleosfoor, 2022).

Table 2. Coefficient of determination between actual and predicted values of the optimized artificial neural
network with the artificial ant colony in the Training and testing phase

Date Sampling Training Phase Test Phase
2019/07/17 0.9541 0.9323
2019/07/22 0.9811 0.9678
2019/07/27 0.9899 0.9678
2019/08/02 0.9971 0.9701
2019/08/07 0.9762 0.9711
2019/08/11 0.9984 0.9725
2019/08/16 0.9961 0.9755
2019/08/21 0.9801 0.9797
2019/08/27 0.9911 0.9801
2019/09/01 0.9701 0.9599
2019/09/06 0.9873 0.9645
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Artificial ant colony

Artificial bee colony

Date

Real Sampling

2019/07/17

2019/07/22

2019/07/27

2019/08/02

2019/08/07

2019/08/11
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A study utilized the LVQ4 neural network to examine the spatial distribution of the tomato leaf miner moth across
three distinct scales. Findings revealed that the LVQ4 neural network demonstrated remarkable accuracy and

efficiency in analyzing the pest's distribution patterns, effectively identifying its cumulative distribution trend

(Shabani nejad er al,, 2016). Although previous research in the field of pest spatial distribution analysis has shown
impressive accuracy and efficiency, but this study opted for ant colony and artificial honey bee colony algorithms

because of their exceptional capability to determine optimal weights for the neural network. These algorithms, by

utilizing their unique mechanisms, are not only capable of passing through local minima, but also capable of

exploring the numerical search space with high accuracy and without deviation from the optimal path to determine

the most accurate weights for the neural network. These features make them an ideal solution for addressing

complex optimization challenges across diverse scientific disciplines.
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Table 3. Coefficient of determination between actual and predicted values of the optimized artificial neural
network with the Artificial bee colony in the Training and testing phase

Date Sampling Training Phase Test Phase
2019/07/17 0.9868 0.9741
2019/07/22 0.9974 0.9877
2019/07/27 0.9826 0.9799
2019/08/02 0.9848 0.9716
2019/08/07 0.9861 0.9811
2019/08/11 0.9901 0.9799
2019/08/16 0.9936 0.9810
2019/08/21 0.9987 0.9722
2019/08/27 0.9899 0.9643
2019/09/01 0.9901 0.9780
2019/09/06 0.9901 0.9884

The research documented in this article using ANN models in agriculture is precisely suited for integrated pest
management. By employing advanced techniques like optimized neural networks, it becomes possible to achieve
significant objectives, such as minimizing pesticide usage while preserving or enhancing crop yields, making this
approach one of the most impactful advancements in modern agricultural practices. Using advanced technologies,
the pest population in different parts of the farm is identified and evaluated in precise detail, and a map of the
population density of these pests is prepared. This map allows the identification of areas where the pest population
has exceeded the economic threshold, enabling farmers to take targeted action only in these areas.
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