
 

3968-2783: eISSN – 9996-0259: pISSN 

Journal of Entomological Society of Iran   2026, 46 (1), 71−83 
 

 © 2026 by Author(s), Published by the Entomological Society of Iran 
This Work is Licensed under Creative Commons Attribution-Non-Commercial 4.0 International Public License. 

Research Article 

Evaluation of metaheuristic algorithms in detecting the spatial distribution 
of the tomato fruit worm, Helicoverpa armigera (Lep., Noctuidae) 
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1- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran 

Abstract. This study aimed to predict the spatial distribution of the tomato 
fruitworm Helicoverpa armigera (Lep: Noctuidae) population using an artificial 
neural network optimized with ant and artificial honeybee colony algorithms. Data 
on the population density of this pest were collected in a 2000 m2 tomato field 
located at geographical coordinates 38S, 693942E, and 3800263N. In these 
models, latitude and longitude variables were used as input variables, and 
population changes in tomato fruitworm larvae of different ages were used as 
output variables. The network used was a multilayer perceptron optimized using 
two metaheuristic algorithms. To evaluate the accuracy of the neural networks used 
to predict the spatial distribution of this pest, an average comparison was made 
between the spatially predicted values by the optimized neural network and their 
actual values. A comparison of the means showed no significant difference between 
the actual and predicted spatial datasets in the training and testing phases. A 
coefficient of determination of 0.9987 indicated that the neural network optimized 
with the artificial honey bee colony algorithm achieved a higher accuracy than the 
ant colony algorithm, with a coefficient of determination of 0.9911 for predicting 
the density of H. armigera moths. In addition, maps drawn by the neural network 
optimized with both metaheuristic algorithms showed that the spatial distribution 
of this pest was cumulative. 
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Introduction 
Tomato, scientifically known as (Lycopersicon esculentum Mill), is one of the most widely consumed vegetables 
worldwide. In Iran, it ranks among the major vegetable crops and accounts for about 41.6% of the total vegetable 
production. The area under cultivation of this crop has been steadily expanding, and in 2023-2024, more than 
130,000 hectares were allocated to tomato farming, resulting in an estimated yield of 5,049,910 tonnes (Ahmadi 
et al., 2022). Despite its importance, tomato production is continuously threatened by various pests that reduce 
both yield and quality. Among them, the tomato fruit worm Helicoverpa armigera (Hubner) (Lep: Noctuidae) is 
recognized as one of the most destructive species. This pest has become a major concern for tomato producers in 
Iran and many other countries due to its increasing economic impact (Guo et al., 2020; Singla & Singh, 2020). 
H. armigera feeds on the vegetative and reproductive structures of host plants, such as stems, leaves, flowers, and 
fruit, during various larval stages (Liu et al., 2004). Their strong preference for reproductive organs makes them 
especially damaging to crop yield. Early instar larvae typically feed on leaves near the oviposition site, whereas later 
instars move to reproductive structures such as flowers and fruits (Liu et al., 2007). 

The greatest damage to crops is caused by older larvae. In tomatoes, unripe fruits are attacked early in the 
season, and secondary infection by microorganisms leads to fruit rot, ultimately causing serious damage and a 
significant reduction in yield (Diatte et al., 2017; Sousa et al., 2021).The costs associated with yield reduction and 
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control of this pest in tomato crops in Asia, Europe, and Africa are estimated to be approximately five billion 
dollars (Jones et al., 2019) . 

Farmers typically rely heavily on chemical pesticides to control the tomato fruit worm (Vivan et al., 2016). 
However, repeated use of these pesticides has not only led to resistance development but also caused environmental 
pollution and significantly increased production costs. Therefore, the use of integrated management is essential to 
prevent the improper application of pesticides (Fite & Tefera, 2022). To develop integrated management 
programs, knowledge of its population changes on farms over time (Garzia et al., 2011). Generally, for providing 
more efficient and accurate information when examining pest population trends and, consequently, ensuring 
timely pesticide application, innovative on-farm methods can be used to generate more realistic estimates at lower 
cost and in less time. Multiple studies have shown that artificial neural networks (ANNs) are highly capable of 
recognizing spatial distribution patterns of ecological populations (Irmak et al., 2006). An artificial neural network 
is an artificial intelligence tool used for studying the spatial and temporal dynamics of pest populations. For 
example, a study developed a prediction system for a system for predicting the risk level of western flower thrips 
using artificial neural networks and an adaptive neuro-fuzzy inference system. The numerical results demonstrated 
strong performance of both models, confirming their efficiency in pest monitoring (Tay et al., 2023). Artificial 
neural networks have also been used as a tool for seasonal prediction of Spodoptera spp. attack intensity in soybean 
fields. The selected artificial neural network incorporated weather data from 25 days before the pest density 
assessment. The prediction of the artificial neural network and pest density in soybean fields showed a correlation 
of 0.863 (de França et al., 2024). 

Heuristic search optimization methods are typically used to minimize errors in these networks; however, such 
methods may cause the network to become stuck in local optima, thereby limiting its overall performance. 
Therefore, it is necessary to utilize metaheuristic algorithms to provide better solutions or to achieve near-optimal 
values for optimization problems in neural networks. Metaheuristic algorithms offer three categories of solutions—
near-optimal, optimal, and best—depending on real-world application areas (Alfa et al., 2020). The Artificial Bee 
Colony (ABC) optimization algorithm and the Ant Colony Optimization (ACO) algorithm are two well-known 
metaheuristic algorithms. The Ant Colony algorithm is an optimization method inspired by the foraging 
behaviour of natural ant colonies. The Artificial Bee Colony algorithm, introduced by Karaboga, is inspired by 
the food foraging behavior of honey bees (Karaboga, 2005). These two approaches are highly effective because 
they can address a wide range of optimization challenges and employ randomized processes that improve the 
likelihood of reaching the global optimum. Furthermore, they are specifically tailored to boost the performance 
of artificial neural networks. Ant colony and bee colony algorithms have the potential to significantly enhance the 
effectiveness and efficiency of the training process, particularly when dealing with complex and high-dimensional 
datasets.  The primary objective of these algorithms is to address the shortcomings of heuristic search methods and 
enhance the efficiency of weight optimization within artificial neural networks (Lamjiak et al., 2024; Socha & 
Blum, 2007). As a result, they expand the search efficiency of neural networks, improving the likelihood of 
achieving optimal solutions in complex problems.  The application of these two algorithms is widespread and plays 
a significant role in almost all fields, including engineering, industry, and agriculture. Owing to their priority and 
superiority over other competitive optimization algorithms, these algorithms are widely preferred (Bourhis et al., 
2021). 

However, no comprehensive and systematic research has been conducted using Ant Colony and Artificial 
Bee Colony algorithms to estimate pest dispersion in farms. Therefore, this study examined the performance of 
two nature-inspired algorithms, namely the Artificial Bee Colony Optimization algorithm and the Ant Colony 
Optimization algorithm, to determine the dispersion pattern of the tomato fruit worm population across the farm. 
Network-derived maps provide a basis for the precise and judicious application of chemical pesticides, leading to 
more effective and sustainable pest management in tomato cultivation. Therefore, there is hope that the optimized 
artificial neural network can be integrated in integrated pest management programmes on tomato farms. 

Materials and methods 
Geographic location and sampling method 
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For this research, a plot of land covering about 2,000 square meters was chosen, located at the geographical 
coordinates (38S, 693942E, 3800263N). Tomato seedlings of the Karoon variety were planted at the site.  The 
field was organized into 32 rows, each spaced 150 cm apart, with a distance of 40 cm between the plants within 
each row and 110 plants were planted per row. Pest population fluctuations were monitored every five days using 
a systematic sampling pattern, counting H. armigera larvae at different developmental stages on plants numbered 
5, 13, 21, and 29 within rows 2, 5, and 8. No pesticide was applied to maintain its natural spatial distribution. 
All planting, cultivation, and harvesting activities were conducted uniformly across all rows to ensure consistency 
in operations. 

Data preprocessing  

Data normalization, also known as data preprocessing, is a critical step for improving the performance of neural 
networks. This process, usually carried out before training the network, involves transforming the input data to 
enhance their clarity and usability for the model (Zou et al., 2009). Data normalization can be achieved using 
various methods, with min-max normalization being one of the most widely used approaches. This method 
involves transforming the feature values into a range typically between 0 and 1. The scaling process, known as 
min-max normalization, is mathematically expressed in Equation (1). 

(1) 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛= 𝑥𝑥−𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚− 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

 

In the given expression, X represents the value of a random feature that requires normalization. In addition, 
xmin and xmax denote to the minimum and maximum values of the desired feature, respectively. 

Perceptron neural networks  

Multilayer perceptron neural networks are composed of one or more intermediate layers, where the input signals 
are initially standardized using normalization coefficients. Once the necessary calculations are completed, the final 
result is mapped back to the actual values (Wu & Feng, 2018).  The calculated output values were compared with 
the actual values, and the error rate was determined. If the error rate differed from the predetermined desired 
value, the process returned to the previous step, the correlation coefficients were changed, and the calculations 
were repeated. These networks utilize the error backpropagation algorithm as the foundation of their training 
process (Novikov et al., 2015). Despite the overall success of the error backpropagation algorithm, it faces several 
fundamental challenges. One of the prominent problems is the slow convergence of the algorithm. Additionally, 
the success rate in convergence is strongly affected by the choice of initial values of the network weights, bias 
vectors, and fine-tuning of parameters such as the learning rate (Zhang & Zhang, 2018)  .To address the limitations 
of this algorithm, metaheuristic algorithms are employed to enhance convergence speed and optimize network 
weights Therefore, this study employs the Ant Colony Optimization algorithm and the Artificial Bee Colony 
algorithm. 

Artificial neural network architecture  

In the process of designing the structure and architecture of a neural network, the number of elements in the input 
vector is dictated by the specific nature of the problem under analysis and cannot be arbitrarily chosen. However, 
aspects such as the number of hidden layers, quantity of neurons, connectivity between neurons, choice of 
activation function, and number of iterations are entirely under the designer's control. Therefore, to enhance 
performance, an optimal design of the neural network is essential (Desjardins et al., 2015). A structured eight-step 
process was implemented to determine the model parameters and refine the design for optimal performance 
(Kaastra & Boyd, 1996). In this study, the optimized neural network employing the Ant Colony Optimization 
(ACO) algorithm with eight hidden neurons and the Artificial Bee Colony (ABC) algorithm with six hidden 
neurons demonstrated strong performance. The sigmoid function was used as the activation function in the 
hidden layer, whereas a linear function was applied in the output layer. The total number of iterations 
for all steps was fixed at 1500 to ensure computational stability and maintain accuracy (Fig. 1).  

Optimizing neural network weights using the Ant colony algorithm  
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The ant colony algorithm mimics the natural behavior of ants by employing simulated ants to navigate through a 
graph, offering an effective method for problem-solving. The key advantage of this method over genetic algorithms 
lies in its ability to handle dynamic graphs, allowing the ant algorithm to operate continuously and adapt to 
changes in real time (Ebid et al., 2024). The main steps include four important stages: 1- Determine the initial 
values for ant colony parameters, such as the number of generations and the initial amount of pheromone 2- 
Represent the features as nodes of a graph (in this step, a number of ants are created and randomly placed on the 
nodes of the graph). Each ant starts with a random feature and then calculates the goodness of fit of all ants) 3- 
All representative ants collaborate simultaneously to construct a new solution. During this process, the (K) ant is 
randomly positioned on the (i) node (feature). From this starting point, ant k at node (i) chooses its next node (j) 
based on the probabilistic criteria outlined in Equation (2). 

(2) 

𝑝𝑝𝑘𝑘(𝑖𝑖. 𝑗𝑗) =

⎩
⎪
⎨

⎪
⎧ �𝑡𝑡𝑖𝑖 𝑗𝑗�

𝛼𝛼 × [𝑛𝑛𝑖𝑖 𝑗𝑗]𝛽𝛽

∑𝑢𝑢𝑢𝑢𝑢𝑢𝑘𝑘(𝑖𝑖)[𝑡𝑡𝑖𝑖𝑖𝑖]𝛼𝛼[𝑛𝑛𝑖𝑖𝑖𝑖]𝛽𝛽
  

0
0

 

Here, nij represents the exploration information, and Jk(i) refers to the collection of neighboring nodes of 
node (i) that ant (K) has not yet visited. Parameters α and β are used to balance the significance of pheromones 
relative to the exploration information, which is calculated calculated as shown in Equation (3). 

(3) 
𝑛𝑛𝑖𝑖𝑖𝑖 =

∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1

�∑ 𝑥𝑥𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑛𝑛𝑁𝑁
𝑛𝑛=1

 

(N) represents the total number of training samples. Node (j) is added as equation (4): 

(4) 
𝑗𝑗 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑢𝑢𝐽𝐽𝑘𝑘(𝑖𝑖)�[𝑡𝑡𝑖𝑖𝑖𝑖]𝛼𝛼 [𝑛𝑛𝑖𝑖𝑖𝑖]𝛽𝛽�    𝑖𝑖𝑖𝑖 𝑞𝑞 ≤ 𝑞𝑞0

𝐽𝐽                                            𝑖𝑖𝑖𝑖 𝑞𝑞 >  𝑞𝑞0
 

where (q) represents a uniform random number between 0 and 1, (q₀) serves as the threshold parameter, and 
J ∈ Jk(i) denotes the node that is selected randomly based on the associated probabilities.  

Once the next node is chosen, a new subset of features is created, and the goodness-of-fit of the ant is 
evaluated. The traversal process terminates when a stopping condition is satisfied (which may include reaching a 
predefined number of selected features, observing no improvement upon adding a new feature, or detecting 
negligible progress below a set threshold). 4- The fourth step focuses on updating the paths using pheromones. 
After selecting the ant with the lowest squared error, indicating the best solution, the overall update process begins. 
The only ant that succeeds in finding the best solution highlights a part of the optimal solution by increasing the 
pheromone level along its path. This process directs the search towards the neighborhood of the best solution. The 
update of this path is performed using Equations (5) and (6).  

(5) ρ∆𝑡𝑡𝑖𝑖𝑖𝑖 + (1 − 𝜌𝜌)𝑡𝑡𝑖𝑖𝑖𝑖 → 𝑡𝑡𝑖𝑖𝑖𝑖 

(6) 
∆𝑡𝑡𝑖𝑖𝑖𝑖 �

𝑄𝑄 
𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚

  𝑖𝑖𝑖𝑖 {𝑖𝑖𝑖𝑖}𝜖𝜖𝑠𝑠+    

0   𝑖𝑖𝑖𝑖 {𝑖𝑖𝑖𝑖}𝜖𝜖𝑠𝑠+    
 

Parameter (p), where 0 < p ≤ 1, regulates the rate of pheromone degradation. 

The operation terminates when meeting the stopping condition; otherwise, it proceeds to restart at the second 
step. It also stops if the default maximum solution is achieved and the comprehensive solution exhibits only minor 
successive changes (Li et al., 2024).  

Optimizing neural network weights using the artificial honey bee colony  
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The artificial bee colony algorithm consists of three basic components: 1- worker bees, 2- non-worker bees, and 
3- food resources. In this model, there are two behavior-guiding methods: recruiting new bees to explore rich food 
resources upon receiving positive feedback and abandoning poor food resources when negative feedback is received 
(Kıran & Fındık, 2015). In the artificial bee algorithm, a colony consists of three groups of bees: 1- worker bees 
associated with specific food sources 2- observer bees that monitor the selection of food sources, and 3- pioneer 
bees that search for food sources randomly. Both observer and pioneer bees are called non-worker bees. Initially, 
the forerunners identifiy the location of all available food sources. Once discovered, both forerunners and worker 
bees extract nectar from these sources. Over time, persistent harvesting depletes resources. Consequently, the 
worker bees transition into forerunners, restarting the cycle by searching for new food sources. In an artificial bee 
colony, each potential solution to the optimization problem is represented by the location of a food source, and 
the quantity of nectar at that source reflects the fitness of that specific solution. The population size matches the 
number of worker or observer bees, ensuring that every bee is linked to a single food source. The algorithm begins 
by generating an initial population of SN solutions, randomly distributed across potential food source locations. 
Here, SN corresponds to the number of worker or observer bees, and each solution (Xi) is represented as a (D) 
dimensional vector, with (D) denoting the number of optimization parameters. Within the framework of the 
artificial bee colony algorithm, each primary iteration is composed of three key steps; 1. Worker bees are dispatched 
to their respective food sources, where they evaluate the nectar quantity available. 2. Information about food 
sources is shared within the colony, enabling observer bees to select specific areas and extract nectar from the newly 
identified food sources for assessment. 3. Pioneer bees are then determined and sent randomly to explore potential 
food source locations, further bolstering the search for optimal solutions (Karaboga et al., 2011  ). These steps are 
repeated a specific number of times, referred to as the maximum number of repetitions.  During this cycle, the 
artificial observer bee chooses a food source based on the probability value (Pi) associated with it. This probability 
is determined using Equation (7). 

(7) 
𝑝𝑝𝑖𝑖 =  

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑠𝑠𝑠𝑠)
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (𝑠𝑠𝑠𝑠)𝑆𝑆𝑆𝑆
𝑛𝑛=1

 

In this equation, fitness (Si) represents the fitness value of the solution (Si), reflecting the quantity of nectar 
available at the food source located at the (i) position. Meanwhile, (Sn) denotes the total number of food sources, 
corresponding to the number of worker or observer bees in the colony. To establish a new food location based on 
the existing location stored in memory, the artificial bee colony uses the formula given in in Equation (8), as 
follows:  

(8) 𝑣𝑣𝑖𝑖𝑖𝑖 = �𝑥𝑥𝑖𝑖𝑖𝑖 −  𝑥𝑥𝑘𝑘𝑘𝑘�∅𝑖𝑖𝑖𝑖 +  𝑥𝑥𝑖𝑖𝑖𝑖 

In the equation (8): 

𝑘𝑘 ∈ {1,2, … . . 𝑆𝑆𝑆𝑆}و  𝑗𝑗 ∈ {1,2, … .𝐷𝐷} 

Indices are selected randomly, with the condition that while k is chosen arbitrarily, its value is different from 
(i). The parameter (øij), determined as a random number within the range of -1 to 1, plays a pivotal role in 
regulating the generation of neighboring food resources surrounding Xij. This equation demonstrates that as the 
gap between (Hij) and (Xkj) narrows, the deviation from the initial point position decreases proportionally. As 
the search progresses closer to the optimal solution, the step length gradually decreases. If any parameter surpasses 
its permissible limit, it is modified to be within an acceptable range. By employing this approach, the pioneer bee 
can identify a new food source using Equation (9).  

(9) 𝑥𝑥𝑖𝑖
𝑗𝑗 = 𝑥𝑥𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0,1](𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚

𝑗𝑗 −  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚
𝑗𝑗 ) 

Once the artificial bee generates and assesses the candidate source location (Vij), its efficiency is compared 
with that of the previous location. If the new source contains an equal or greater amount of nectar than the 
previous one, it replaces the earlier location in memory; otherwise, the prior location remains unchanged. In 
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essence, this process reflects a greedy selection mechanism comparing the current and newly proposed locations 
(Kaya et al., 2022). 

Stopping condition  

The total number of algorithm iterations for all algorithms was considered to be 1500 and if there was no 
improvement in the fitness value after 400 iterations, the algorithms terminated. The neural network 
implementation, along with the artificial ant and honeybee colony algorithm, was developed using MATLAB 
version 24.2. Statistical comparisons were performed using SPSS version 21. 

Results  
To evaluate the ability of the trained neural network to predict the distribution pattern of H. armigera, a statistical 
comparison was conducted between the actual data and the predictions generated by the neural network, 
optimized using the artificial ant colony and honey bee algorithms. Here, the null hypothesis implies that the 
means are equal. A t-test was used to compare the means. Table (1) shows the calculated P-values for both the ant 
colony and artificial honey bee algorithms. The results indicate that the actual and predicted values by the neural 
network combined with the ant colony and the artificial honey bee algorithms were not statistically significantly 
different. The coefficients of explanation comparing the actual values from each sample with the predicted values 
generated by the neural network combined with the ant colony algorithm are presented in Table 2, and those 
derived from the artificial honey bee algorithm are displayed in Table 3. The findings indicate that the artificial 
neural network, enhanced with the artificial honey bee algorithm, demonstrates superior generalizability in 
estimating tomato fruitworm density under field conditions. 

Spatial distribution maps of H. armigera using ant colony and artificial honey bee colony algorithms  

A spatial distribution map of the tomato fruitworm was developed using an artificial neural network model. This 
model was enhanced using optimization techniques involving the ant colony and artificial honey bee colony 
algorithms, as illustrated in Fig. 2. 

Discussion  
Pests are widely regarded as a significant challenge and a major obstacle to improving the productivity of 
agricultural crops and their effective management plays a vital role in maintaining crop health and increasing 
yields. One major challenge in achieving effective pest management lies in the lack of comprehensive 
understanding of the numerous factors that shape pest dynamics and behavior.   

  

Fig. 1. Pseudocode for artificial bee colony (right side of the image) and ant colony algorithm (left side of the image) 
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Table 1. Statistical comparisons between the observed and estimated to H. armigera by artificial neural network 
optimized whit ant colony optimization and artificial bee colony algorithm 

Compear mean ANN whit Artificial bee colony Compear mean ANN whit Ant colony Date Sampling 
0.54 0.78 2019/07/17 
0.62 0.81 2019/07/22 
0.76 0.73 2019/07/27 
0.73 0.75 2019/08/02 
0.73 0.78 2019/08/07 
0.62 0.79 2019/08/11 
0.68 0.80 2019/08/16 
0.48 0.79 2019/08/21 
0.74 0.89 2019/08/27 
0.69 0.84 2019/09/01 
0.71 0.80 2019/09/06 

 

This study explores the development of an intelligent system designed to effectively predict the population 
dynamics of H. armigera in tomato fields, leveraging advanced techniques based on artificial neural networks. 
Developing such a system not only deepens the understanding of this pest's behavior but also facilitates more 
effective and efficient management strategies to control it. In this study, an artificial neural network optimized 
with two artificial bee and ant colony algorithms was able to accurately determine the distribution pattern of H. 
armigera and draw a map of the distribution of this species in the field. Based on the guide in Figure (2), the red 
areas are the most contaminated areas of the field. The resulting maps also show the cumulative distribution of 
this pest at different dates. These results were obtained based on data collected from a pilot field, during a planting 
to harvest period. Our findings showed that combining neural networks with artificial ant and honeybee colony 
algorithms can be used as an effective tool for predicting and managing H. armigera populations in farms. By 
integrating a standard multilayer perceptron neural network with metaheuristic algorithms, we found that the 
system delivers results with very high accuracy, making it an optimal choice for developing a pest prediction model. 
These predictions can help farmers plan pest management, leading to reduced crop losses and less pesticide use. 
As a result, such an approach will reduce environmental pollution. Once the input variables are known, they can 
be loaded into the aforementioned models to predict the population of this pest and this allowing for timely and 
effective control strategies to be deployed, such as utilizing biological or chemical pesticides, based on threshold 
values. This study's findings align closely with those of earlier research. For instance, one such study focused on 
developing a system to predict the risk level of western flower thrips (Frankliniella occidentalis) in rose 
greenhouses. Using artificial neural networks and an adaptive neurofuzzy inference system (ANFIS), the study 
demonstrated the remarkable effectiveness of these two networks in tracking and monitoring western flower thrips 
(Tay et al., 2023). Also, in a study that compared the performance of an optimized artificial neural network with 
the colonial competition algorithm and the mixed frog mutation to predict the distribution pattern of the seven-
spotted ladybird (Coccinella septempunctata) in a hay field in Zarqan County, the results showed that the mixed 
frog mutation algorithm had higher accuracy than the colonial competition algorithm in detecting the distribution 
of this predator (Mohammadi & Aleosfoor, 2022). 

 

Table 2. Coefficient of determination between actual and predicted values of the optimized artificial neural 
network with the artificial ant colony in the Training and testing phase 

Test Phase Training Phase Date Sampling 
0.9323 0.9541 2019/07/17 
0.9678 0.9811 2019/07/22 
0.9678 0.9899 2019/07/27 
0.9701 0.9971 2019/08/02 
0.9711 0.9762 2019/08/07 
0.9725 0.9984 2019/08/11 
0.9755 0.9961 2019/08/16 
0.9797 0.9801 2019/08/21 
0.9801 0.9911 2019/08/27 
0.9599 0.9701 2019/09/01 
0.9645 0.9873 2019/09/06 
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Date 
Sampling 

Real Artificial bee colony Artificial ant colony 

2019/07/17 

   

2019/07/22 

   

2019/07/27 

   

2019/08/02 

   

2019/08/07 

   

2019/08/11 
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2019/08/16 

   

2019/08/21 

   

2019/08/27 

   

2019/09/01 

   

2019/09/06 

   

Fig. 2. Distribution map of H. armigera by neural network optimized by ant colony algorithm and artificial honey 
bee colony 

A study utilized the LVQ4 neural network to examine the spatial distribution of the tomato leaf miner moth across 
three distinct scales. Findings revealed that the LVQ4 neural network demonstrated remarkable accuracy and 
efficiency in analyzing the pest's distribution patterns, effectively identifying its cumulative distribution trend 
(Shabani nejad et al., 2016). Although previous research in the field of pest spatial distribution analysis has shown 
impressive accuracy and efficiency, but this study opted for ant colony and artificial honey bee colony algorithms 
because of their exceptional capability to determine optimal weights for the neural network. These algorithms, by 
utilizing their unique mechanisms, are not only capable of passing through local minima, but also capable of 
exploring the numerical search space with high accuracy and without deviation from the optimal path to determine 
the most accurate weights for the neural network. These features make them an ideal solution for addressing 
complex optimization challenges across diverse scientific disciplines.  
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Table 3. Coefficient of determination between actual and predicted values of the optimized artificial neural 
network with the Artificial bee colony in the Training and testing phase 

Test Phase Training Phase Date Sampling 
0.9741 0.9868 2019/07/17 
0.9877 0.9974 2019/07/22 
0.9799 0.9826 2019/07/27 
0.9716 0.9848 2019/08/02 
0.9811 0.9861 2019/08/07 
0.9799 0.9901 2019/08/11 
0.9810 0.9936 2019/08/16 
0.9722 0.9987 2019/08/21 
0.9643 0.9899 2019/08/27 
0.9780 0.9901 2019/09/01 
0.9884 0.9901 2019/09/06 

 

The research documented in this article using ANN models in agriculture is precisely suited for integrated pest 
management. By employing advanced techniques like optimized neural networks, it becomes possible to achieve 
significant objectives, such as minimizing pesticide usage while preserving or enhancing crop yields, making this 
approach one of the most impactful advancements in modern agricultural practices. Using advanced technologies, 
the pest population in different parts of the farm is identified and evaluated in precise detail, and a map of the 
population density of these pests is prepared. This map allows the identification of areas where the pest population 
has exceeded the economic threshold, enabling farmers to take targeted action only in these areas. 
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 Helicoverpa armigera فرنگیگوجه میوه کرم فضایی توزیع تعیین در فراابتکاري هايالگوریتم ارزیابی

(Lep., Noctuidae)  
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 ,.Helicoverpa armigera (Lepفرنگی گوجه میوه کرم جمعیت فضایی توزیع بینیپیش با هدف مطالعه این چکیده:

Noctuidae)، مصنوعی عسل زنبور کلنی و مورچه کلنی الگوریتم با شده بهینه مصنوعی عصبی شبکه از استفاده با 
. شد مترمربع ثبت 2000 مساحت با فرنگیي گوجهمزرعه یک در آفت این جمعیت تراکم به مربوط هايداده .شد انجام

لاروهاي سنین به عنوان متغیرهاي ورودي و تغییرات جمعیت برداري ختصات جغرافیایی نقاط نمونهها از مدر این مدل
شده بهینهنوع پرسپترون چندلایه شبکه مورد استفاده از . به عنوان متغیر خروجی استفاده شد فرنگیکرم میوه گوجه مختلف

این  فضاییبینی پراکنش عصبی مورد استفاده در پیش هايشبکه دقتبود. براي ارزیابی  متاهیوریستیک الگوریتم دو با
و مقادیر واقعی آنها استفاده شد.  شدهبهینه ، از مقایسه میانگین بین مقادیر پیش بینی شده مکانی توسط شبکه عصبیآفت

این  بینی شده مکانیهاي واقعی و پیشدر فازهاي آموزش و آزمایش بین مجموعه داده مقایسه میانگین نشان داد که
شده با الگوریتم بهینه شبکه عصبی بالاترنشان از دقت  9987/0 ضریب تبیینوجود  رد.داري وجود نداتفاوت معنیگونه 

 .Hپره شببینی تراکم در پیش 9911/0کلنی زنبور عسل مصنوعی نسبت به الگوریتم کلنی مورچه با ضریب تبیین 
armigera  .نشان  عصبی بهینه شده با هر دو الگوریتم متاهیوریستیک توسط شبکه هاي ترسیم شدهنقشههمچنین داشت
 .تجمعی استفضایی این آفت  داد، توزیع

 فرنگیالگوریتم کلنی مورچه، الگوریتم زنبور عسل مصنوعی، کرم میوه گوجه کلیدي:کلمات 
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