اثر پیری پروکسی فن و دیفنولان بر دگردیسی و فعالیت‌های آنزیمی کرم جوانه خوار تنباکو Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae)

نوع مقاله : مقاله کامل، انگلیسی

نویسندگان

1 گروه جانورشناسی، دانشگاه الله آباد، پریاگاری، 211002، هند

2 گروه جانورشناسی ، دانشگاه IFTM ، الله آباد ،244102 ، هند

چکیده

کرم جوانه‌خوار تنباکو Spodoptera litura (Lepidoptera: Noctuidae)،آفتی چندخوار روی محصولات کشاورزی است که خسارت اقتصادی شدیدی به بار می‌آورد. در مطالعه حاضر، اثر بیولوژیک و فعالیت آنزیمی دو تنظیم کننده رشد حشرات، پیری پروکسی‌فن و دیفنولان علیه لارو S. litura مورد بررسی قرار گرفت. لاروهای سن ماقبل آخر (0، 24 و 48 ساعته) با دوزهای کشنده (1، 2 و 4 میکروگرم بر میکرولیتر) هر دو آنالوگ هورمونی جوانی (JHAs) به صورت موضعی تیمار شدند. اثرات متعددی از جمله طولانی شدن مدت پوست اندازی لارو به لارو و لارو به شفیره، مرگ و میر لارو و شفیره، خروج ناموفق حشره از مرحله شفیرگی، شکل بینابین، تشکیل تعداد کم شفیره و کاهش ظهور حشره بالغ مشاهده شد. علاوه بر این اثرات در پوست اندازی، هر دو هورمون جوانی دارای اثرات مهاری روی استیل کولین استراز (AChE) بودند اما روی آنزیم گلوتاتیون-S-ترانسفراز (GST) دارای اثرات تحریکی بودند. مقادیر Log IC50 و IC50 پیرپیروکسی فن برای نرخ مهار ظهور بالغین،معادل 98/0- و 1/0 میکروگرم بر میکرولیتر برای لاروهای 24 ساعته، 005/0 و 01/1 میکروگرم بر میکرولیتر برای لاروهای 48 ساعته بود. این مقادیر در دیفنولان برای لاروهای 24 ساعته،  085/0 –و 82/0 میکروگرم بر میکرولیتر بود و در لاروهای 48 ساعته، معادل 09/0 - و 23/1 میکروگرم بر میکرولیتر، محاسبه شد. نتایج نشان داد که هر دو ترکیب تنظیم کننده رشد حشرات، روی لاروهای S. litura دارای قدرت حشره‌کشی هستند.

چکیده تصویری

اثر پیری پروکسی فن و دیفنولان بر دگردیسی و فعالیت‌های آنزیمی کرم جوانه خوار تنباکو Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae)

کلیدواژه‌ها

موضوعات


 © 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Hu, B., Songzhu, H., He, H., Qi, W., Miaomiao, R., Sufang, H., Xiangrui, T. & Jianya S. (2019) Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pesticide Biochemistry and Physiology. 155, 58-71. https://doi.org/10.1016/j.pestbp.2019.01.008
Casida, J. E. & Durkin, K. A. (2013) Acetylcholinesterase insecticide retrospective. Chemico-Biological Interactions. 203(1), 221-225. https://doi.org/10.1016/j.cbi.2012.08.002
Cherbas, L., Koehler, M. M. D. & Cherbas, P. (1989) Effects of juvenile hormone on the ecdysone response of Drosophila Kc cells. Developmental Genetics. 10(3), 177–88. https://doi.org/10.1002/dvg.1020100307
Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R. & Oakeshott, J. G. (2006) A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology. 15, 615–636. doi: 10.1111/j.1365-2583.2006.00672.x
Dhadialla, T. S., Carlson, G. R. & Le, D. P. (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology. 43, 545–69. https://doi.org/10.1146/annurev.ento.43.1.545
Dhir, B. C., Mohapatra, H. K. & Senapati, B. (1992) Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection 20, 215-217.
Edwards, J. P. & Abraham, L. (1985) Laboratory evaluation of two insect juvenile hormone analogues against Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 21, 189–94. https://doi.org/10.1016/0022-474X(85)90014-1
Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Gopalakrishnan, S., Chen, F.-Y., Thilagam, H., Qiao, K., Xu, W. F. & Wang, Ke-Jian. (2011) Modulation and interaction of immune-associated parameters with antioxidant in the immunocytes of crab Scylla paramamosain challenged with lipopolysaccharides. Evidence-based Complementary and  Alternative Medicine 824962. https://doi.org/10.1155/2011/824962
Habig, W.  H. (1981) “Assays for differentiation of glutathione S-transferase” in Method in enzymology. ed. B. J. Willian (New York: Academic Press), 398–405. https://doi.org/10.1016/s0076-6879(81)77053-8
Hamaidia, K. (2014) Laboratory evaluation of a biorational insecticide, Kinoprene, against Culex pipiens larvae: effects on growth and development. Annual Research and Review in Biology 4, 2263–73. http://dx.doi.org/10.9734/ARRB/2014/9729
Hoffmann, K. H. & Lorenz, M. W. (1998) Recent advances in hormones in insect pest control. Phytoparasitica 26, 323–30. http://dx.doi.org/10.1007/BF02981447  
Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. (2018) Molecular Targets for Components of Essential Oils in the Insect Nervous System—A ReviewMolecules 23(1),34. https://doi.org/10.3390/molecules23010034
Kanaan, M. H. (2021) The Negative Effects of Chemical Pesticides and their Consequences on Public Health and the Environment. EC  Veterinary Science 6, 28. https://www.researchgate.net/publication/354282662_The_Negative_Effects_of_Chemical_Pesticides_and_their_Consequences_on_Public_Health_and_the_Environment
Kinareikina, A. & Silivanova, E. (2023) Enzyme Activities in Adult Musca domestica L . Toxics 11(1), 47. https://doi.org/10.3390/toxics11010047
Kostaropoulos, I., Papadopoulos, A. I., Metaxakis, A., Boukouvala, E. & Papadopoulou-Mourkidou, E. (2001) The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Pest Management Science 57(6), 501–508. https://doi.org/10.1002/ps.323  
Li, Y., Qu, C., Zhang, Q., Zhang, L., Luo, C. & Wang, R. (2023) Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura. International Journal of Molecular Sciences 24, 5351. https://doi.org/10.3390/ijms24065351  
Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E. & Schettino, T. (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Research International 321213. https://doi.org/10.1155/2013/321213
Maddheshiya, R. (2021) Effect of a novel juvenoid fenoxycarb on the pupal-adult transformation in the blowfly, Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae). Parasitology Research 120, 2351–2356. Available from: https://doi.org/10.1007/s00436-021-07205-9
Maes, K. (2022) Spodoptera litura (taro caterpillar). CABI Compendium. CABI.
Mallikarjuna, N., Kranthi, K. R., Jadhav, D. R., Kranthi, S. & Chandra, S. (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology 128, 321-328. https://doi.org/10.1111/j.1439-0418.2004.00834.x
Minakuchi, C. & Riddiford, L. M. (2006) Insect juvenile hormone action as a potential target of pest management. Journal of Pesticide Science 31, 77–84. http://dx.doi.org/10.1584/jpestics.31.77
Nasr, H. M., Badaway, M. E. I. & Rabea, E. I. (2010) Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leafworm Spodoptera littoralis. Pesticide Biochemistry and Physiology 98, 198-205. https://doi.org/10.1016/J.PESTBP.2010.06.007
Nijhout, H. F. (2015) A Developmental-Physiological Perspective on the Development and Evolution of Phenotypic Plasticity. In Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development 307, 147–73. DOI:10.1007/978-94-017-9412-1_7
Ramaiah, M. & Maheswari, T. U. (2018) Biology studies of tobacco caterpillar, Spodoptera litura Fabricius. Journal of Entomology and Zoology Studies 6(5), 2284-2289.
Ramesh, B. S. & Singh, B. (2022) Resistance in Spodoptera litura (F.) to Insecticides and Detoxification Enzymes. Indian Journal of Entomology 85(1), 90–94. https://doi.org/10.55446/IJE.2022.519
Riddiford, L. M., Truman, J. W. & Nern, A. (2018) Juvenile hormone reveals mosaic developmental programs in the metamorphosing optic lobe of Drosophila melanogaster. Biology Open 7(4). https://doi.org/10.1242/bio.034025  
Singh, K. P. & Maddheshiya, R. (2022)‘Insecticidal efficacy of a hormonal analogue on the post-embryonic development of a flesh fly, Sarcophaga ruficornis (Diptera: Sarcophagidae).’ Invertebrate Reproduction and Development  Taylor & Francis. 66, 240–246. https://doi.org/10.1080/07924259.2022.2136015
Singh, S. & Kumar, K. (2015) Comparative efficacy of phenoxy derivative JHAs Pyriproxyfen and Diofenolan against polyphagous pest Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera). Phytoparasitica. 43, 553–63. https://doi.org/10.1007/s12600-015-0473-2
Smith, H. H., Idris, O. A. & Maboeta, M. S. (2021) Global Trends of Green Pesticide Research from 1994 to 2019: A Bibliometric Analysis. Journal of Toxicology https://doi.org/10.1155/2021/6637516
Subramanian, S. & Shankarganesh, K. (2016) Insect Hormones (As Pesticides). Ecofriendly Pest Management for Food Security 613-650. https://doi.org/10.1016/B978-0-12-803265-7.00020-8
Suzuki, T., Sakurai, S. & Iwami, M. (2010) Juvenile hormone delays the initiation of rectal sac distention by disrupting ecdysteroid action in the silkworm, Bombyx mori. Pesticide Biochemistry and Physiology 97, 199–203. http://dx.doi.org/10.1016/j.pestbp.2010.01.005
Tunaz, H. & Uygun, N. (2004) Insect growth regulators for insect pest control. Turkish Journal of Agriculture and Forestry 28(6), 377–387. Available at: https://journals.tubitak.gov.tr/agriculture/vol28/iss6/1
Wang, K. J., Gopalakrishnan, S., Chen, F. Y., Thilagam, H., Qiao, K. & Xu, W. F. (2011) Modulation and interaction of immune-associated parameters with antioxidant in the immunocytes of crab Scylla paramamosain challenged with lipopolysaccharides. Evidence-based Complement Altern Med 824962. https://doi.org/10.1155/2011/824962  
Webb, G., Miller, P., Peters, B. & Winner, S. (2011) Efficacy, environmental persistence and non-target impacts of Pyriproxyfen use against Aedes vigilax in Australia. Proc Seventh International Conference on Urban Pests (ICUP) 151-157.  https://www.researchgate.net/publication/236881941
Wu, J., Li, J., Zhang, C., Yu, X., Cuthbertson, A. G. S. & Ali, S. (2020) Biological Impact and Enzyme Activities of Spodoptera litura (Lepidoptera: Noctuidae) in Response to Synergistic Action of Matrine and Beauveria brongniartii. Frontiers in Physiology 11, 584405.  https://doi.org/10.3389/fphys.2020.584405
Xiao, C., Luan, S., Xu, Z., Lang, J., Rao, W. & Huang, Q. (2017) Tolerance potential of Chilo suppressalis larvae to fipronil exposure via the modulation of detoxification and GABA responses. Journal of Asia-Pacific Entomology 20, 1287–1293. Available from: http://dx.doi.org/10.1016/j.aspen.2017.09.013
Zhou, C., Yang, H., Wang, Z., Long, G. Y. & Jin, D. C. (2018) Protective and detoxifying enzyme activity and ABCG subfamily gene expression in sogatella furciferaunder insecticide stress. Frontiers in Physiology 9, 1–12.   https://doi.org/10.3389/fphys.2018.01890
Zibaee, A., Bandani, A. R. & Tork, M. (2009) Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology 19(5), 485–98. https://doi.org/10.1080/09583150902847127  
CAPTCHA Image