هندسه بال در جمعیت‌های Diaphorina citri (Hemiptera: Liviidae) در ایران و آمریکا: دلیلی برای نابرابری داده‌های مولکولی و ریخت‌سنجی

نوع مقاله: مقاله کامل، انگلیسی

نویسندگان

Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology.

چکیده

پسیل آسیایی مرکبات (ACP)، Diaphorina citri Kuwayama، یکی از مهم‌ترین آفات مرکبات در دنیا است. پسیل آسیایی مرکبات علاوه بر خسارت مستقیم تغذیه‌ای، عامل بیماری میوهسبز مرکبات را نیز منتقل می‌کند. به­منظور افزایش دانسته‌های ما درباره جمعیت‌های جغرافیایی پسیل آسیایی مرکبات مرتبط با هاپلوتیپ یک ژن میتوکندریایی COI، روش ریخت‌سنجی هندسی برای مقایسه تنوع بین جمعیت‌های D. Citri در ایران و آمریکا (فلوریدا) استفاده شد. جمعیت‌های پسیل آسیایی مرکبات از ایران، از استان‌های کرمان (جیرفت) و سیستان و بلوچستان (چابهار)، و جمعیت‌های آمریکا از ایالت فلوریدا در سال 2014 جمع‌آوری شدند. در مجموع، 150 نمونه از پنج جمعیت پسیل آسیایی مرکبات (30 حشره بالغ ماده برای هر جمعیت) به طور تصادفی انتخاب و با آنالیزهای یک و چند متغیره بررسی شدند. نتایج نشان‌دهنده اختلاف معنی‌دار شکل (0001/0 > P، 89/5 = F، 0910/0= Wilk’s lambda) و اندازه (0001/0 >P ، 41/61 = F) میان جمعیت‌های مورد مطالعه بود. جمعیت‌های ایران (جیرفت و چابهار) بر پایه شکل و اندازه بال مشابه با یک­دیگر، اما متفاوت از جمعیت‌های آمریکا (فلوریدا) بودند. این مطالعه هم­چنین نابرابری بین داده‌های ریخت‌سنجی (در مطالعه حاضر) و مولکولی (در مطالعات منتشر ‌شده) در جمعیت‌های پسیل آسیایی مرکبات از ایران و آمریکا را نشان داد. به دو دلیل می‌توان این فرضیه را مطرح کرد که تفاوت‌های مشاهده شده ممکن است به­خاطر فاکتورهای ژنتیکی باشد تا این­که محیطی (با وجود نابرابری نتایج این مطالعه با مطالعات منتشر شد): 1) وجود تفاوت معنی‌دار در شکل حتی پس از حذف عامل اندازه؛ 2) وجود ارتباط معنی‌داری بین ماتریکس شکل و فاصله جغرافیایی.

کلیدواژه‌ها


عنوان مقاله [English]

Wing geometry in the populations of Diaphorina citri (Hemiptera: Liviidae) in Iran and USA: an evidence for incongruence of molecular and morphometric data

نویسندگان [English]

  • M. Lashkari
  • S. Iranmanesh
Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology.
چکیده [English]

Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most important citrus pests in the world.In addition to direct feeding damages, it also transmits the greening-disease pathogen. In order to improve understanding of geographic populations of ACP related to the mtCOI Haplotype-1, geometric morphometric was used to compare variations between populations of ACP in Iran and USA (Florida). The ACP populations were collected from the Iranian cities of Jiroft and Chabahar and Florida (USA) in 2014. 150 pecimens from five ACP populations (30 adult females per population) were randomly selected and analysed using ANOVA and MANOVA.The results indicate that wing-shape (Wilk.s lambda = 0.0910, F = 5.89, P < 0.0001) and wing-size (F = 61.41, df =4, P <.0001) were different between Iranian and USA populations. This study also showed incongruence betweenmorphometric and molecular data in the studied populations of D. citri from Iran and USA. The observed differences are probably due to genetic rather than environmental factors because of 1) significant multivariate differences in shape even after removing size variation and 2) significant correlation between geographic and morphometric distance matrices.

کلیدواژه‌ها [English]

  • Citrus greening disease
  • HLB
  • intraspecific variation

Adams, D. C. & Funk, D. (1997) Morphometric inferences on sibling species and sexual dimorphism in Neochlamisus bebbianae leaf beetles, Multivariate applications of the thin-plate spline. Systematic Biology 46, 180-194.

Alibert, P., Moureau, B., Dommergues, J. L. & David, B. (2001) Differentiation at a microgeographical scale within two species of ground beetle, Carabus auronitens and C. Nemoralis (Coleoptera, Carabidae): a geometrical morphometric approach. Zoologica Scripta 30, 299-311.

Atkinson, D. (1995) Effects of temperature on the size of aquatic ectotherms-exceptions to the general rule. Journal of Thermal Biology 20, 61-74.

Berlocher, S. H. & Feder, J. L. (2002) Sympatric speciation in phytophagous insects: moving beyond controversy. Annual Review of Entomology 47, 773-815.

Bertin, A., David, B., Cézilly, F. & Alibert, P. (2002) Quantification of sexual dimorphism in Asellus aquaticus (Crustacea: Isopoda) using outline approaches. Biological Journal of the Linnean Society 77, 523-533.

Bomfim, Z., Lima, K., Silva, J., Costa, M. & Zucchi, R. (2011) A morphometric and molecular study of Anastrepha pickeli Lima (Diptera: Tephritidae). Neotropical Entomology 40, 587-594.

Bookstein, F. L. (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.

Boykin, L. M., De Barro, P., Hall, D. G., Hunter, W. B., Mckenzie, C. L., Powell, C. A. & Shatters, R. G. (2012) Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two Old World lineages and a New World invasion. Bulletin of Entomological Research 17, 1-10.

De Moed, G. H., De Jong, G. & Scharloo, W. (1997) Environmental effects on body size variation in Drosophila melanogaster and its cellular basis. Genetics Research 70, 35-43.

Dujardin, J. P., Pont, F. L., & Martines, E. (1999) Quantitative morphological evidence for incipient species within Lutzomyia quinquefer (Diptera: Psychodidae). Memorias do Oswaldo Cruz 94, 829-836.

Edelaar, P., Alonso, D., Lagerveld, S., Senar, J. C. & Björklund, M. (2012) Population differentiation and restricted gene flow in Spanish crossbills: not isolation-by-distance but isolation-by-ecology. Journal of Evolutionary Biology 25, 417-430.

Garnier, S., Magniez-Jannin, F., Rasplus, J. Y. & Alibert, P. (2005) Whenmorphometry meets genetics: inferring the phylogeography of Carabus solieri using Fourier analyses of pronotum and male genitalia. Journal of Evolutionary Biology 18, 269-280.

Gómez-Palacio, A., Jaramillo-O, N., Caro-Riaño, H., Diaz, S., Monteiro, F. A., Pérez, R., Panzera, F. & Triana, O. (2012) Morphometric and molecular evidence of intraspecific biogeographical differentiation of Rhodnius pallescens (Hemiptera: Reduviidae: Rhodniini) from Colombia and Panama. Infection, Genetics and Evolution 12, 1975-1983.

Grafton-Cardwell, E. E., Stelinski, L. L. & Stansly, P. A. (2013) Biology and management of Asian citrus psyllid, vector of the Huanglongbing pathogens. Annual Review of Entomology 58, 413-432.

Hall, D. G., Richardson, M. L., Ammar, E. D. & Halbert, S. E. (2013) Asian citrus psyllid, Diaphorina citri, vector of citrus huanglongbing disease. Entomologia Experimentalis et Applicata 146, 207-223.

Hernandez-L, N., Barragán, Á. R., Dupas, S., Silvain, J. F. & Dangles, O. (2010) Wing shape variations in an invasive moth are related to sexual dimorphism and altitude. Bulletin of Entomological Research 100, 529-541.

Hillis, D. M. & Moritz, C. (1990) Molecular Systematics. Sinauer Associates, Sunderland, MA.

Kim, K. C. & Mcpheron, B. A. (1993) Evolution of Insect Pests. John Wiley and Sons, New York.

Lashkari, M., Sahragard, A., Manzari, S., Mozaffarian, F. & Hosseini, R. (2013) A geometric morphometric study of the geographic populations of Asian citrus psyllid, Diaphorina citri (Hem.: Liviidae), in Iran and Pakistan. Journal of Entomological Society of Iran 33(2), 59-71.

Lashkari, M., Manzari, S., Sahragard, A., Malagnini, V., Boykin, L. M. & Hosseini, R. (2014) Global genetic variation in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) and the endosymbiont Wolbachia: links between Iran and the USA detected. Pest Management Science 70, 1033-40.

Mozaffarian, F., Sarafrazi, A., Nouriganbalani, G. & Ariana, A. (2007) Morphological variation among Iranian populations of the Carob Moth, Ectomyelois ceratoniae (Zeller, 1839) (Lepidoptera: Pyralidae). Zoology in the Middle East 41, 81-91.

Nayar, J. K. (1969) Effects of larval and pupal environmental factors on biological status of adult at emergence in Aedes taeniorhynchus (Wied.). Bulletin of Entomology Research 58, 811-827.

Nosil, P., Gompert, Z., Farkas, T. E., Comeault, A. A., Feder, J. L., Buerkle, C. A. & Parchman, T. L. (2012) Genomic consequences of multiple speciation processes in a stick insect. Proceedings of the Royal Society B: Biological Sciences 279 (1749), 5058-5065.

Partridge, L., Barrie, B., Fowler, K. & French, V. (1994) Evolution and development of body size and cell size in Drosophila melanogaster in response to temperature. Evolution 48, 1269-1276.

Reiskind, M. H. & Zarrabi, A. A. (2012) Is bigger really bigger? Differential responses to temperature in measures of body size of the mosquito, AedesalbopictusJournal of Insect Physiology 58, 911-917.

Renaud, S. & Millien, V. (2001) Intra- and interspecific morphological variation in the field mouse species Apodemus argenteus and A. speciosus in the Japanese archipelago: the role of insular isolation and biogeographic gradients. Biological Journal of the Linnean Society 74, 557-569.

Rohlf, F. J. (1998) NTSYS-pc, numerical taxonomy and multivariate analysis system, version 2.02g. Exeter Software, Setauket, NY.

Rohlf, F. J. (1999) Shape statistics: procrustes superimpositions and tangent spaces. Journal of Classification 6, 197-223.

Rohlf, F. J. (2004) tpsDig, version 1.4, Software. Available from: http://life.bio.sunysb.edu/morph (accessed 3 March 2015).

Rohlf, F. J. (2009) tpsRegr, version 1.37, Software. Available from: http://life.bio.sunysb.edu/morph (accessed 3 March 2015).

Rohlf, F. J. (2010a) tpsRelw, version 1.46, Software. Available from: http://life.bio.sunysb.edu/morph (accessed 3 March 2015).

Rohlf, F. J. (2010b) tpsUtil, version 1.46, Software. Available from: http://life.bio.sunysb.edu/morph (accessed 3 March 2015).

Rohlf, F. J., Loy, A. & Corti, M. (1996) Morphometric analysis of Old World Talpinae (MMammalia, Inectivora) using partial-warp scores. Systematic Biology 45, 344-362.

Rohlf, F. J. & Marcus, L. F. (1993) A revolution in morphometries. Trends in Ecology and Evolution 8, 129-132.

Rohlf, F. J. & Slice, D. E. (1990) Extensions of the Procrustes method for the optimal superimpositions of landmarks. Systematic Zoology 39, 40-59.

Sas Institute (2003) SAS software, version 9.1. SAS Inc., Cary NC.

Slice, D. E. (2001) Landmark coordinates aligned by Procrustes analysis do not lie in Kendall’s shape space. Systematic Biology 50, 141-149.