بررسی تاثیر تنش‌های دمایی روی سامانه ایمنی بید سیب‌زمینی Phthorimaea operculella (Lepidoptera: Gelechiidae)

نوع مقاله: دومین کنگره بین‌المللی حشره شناسی

نویسندگان

1 دانشجوی دانشگاه صنعتی شاهرود

2 عضو هیات علمی دانشگاه صنعتی شاهرود

چکیده

سلول‌های خونی حشرات، یکی از اجزای مهم سیستم ایمنی حشرات در برابر انواع تنش­ها مانند حمله بیمار‌گرها، پارازیتوئید‌ها، دوره گرسنگی و تغییرات دما می‌باشند. شناخت ویژگی‌های سلول‌های خونی و فراوانی آن‌ها در مطالعات ایمنی‌شناسی سلولی در جهت کنترل بهتر آفت به ما کمک خواهد کرد. در این تحقیق سلول‌های خونی لارو سن چهار Phthorimaea operculella (Zeller) پس از رنگ‌آمیزی با Giemsa با میکروسکوپ نوری و بزرگ‌نمایی 40 شناسایی شدند. 5 نوع هموسیت در حشره بید سیب‌زمینی شناسایی شد که شامل پروهموسیت‌ها، پلاسموتوسیت‌ها، گرانولوسیت‌ها، اونوسیتوئید‌ها و اسفرولوسیت‌ها بودند. اثر تنش­های دمایی مختلف نیز به مدت 24 ساعت بر دفاع سلولی لارو‌های سن چهارم بید سیب‌زمینی بررسی شد. به علاوه تعداد هموسیت­های مختلف و تعداد کل سلول­های خونی بررسی شدند. نتایج نشان داد که تعداد کل هموسیت‌ها و پلاسموتوسیت‌های لارو‌هایی که به مدت 24 ساعت تحت تنش دمایی 35 درجه سانتی‌گراد قرار گرفتند، نسبت به شاهد (دمای 1±25 درجه سانتی گراد) به طور معنی­داری افزایش یافت. همچنین در اثر تنش سرما (دمای 4 درجه سانتی گراد)، تعداد کل هموسیت‌ها، پلاسموتوسیت‌ها و اونوسیتوئید‌ها نسبت به شاهد کاهش معنی‌داری نشان داد. این یافته­ها می­تواند به عنوان مقدمه‌ای برای تحقیقات بیشتر در راستای مطالعات ایمنی­شناسی بید سیب‌زمینی مورد استفاده قرار گیرد.
 

کلیدواژه‌ها


عنوان مقاله [English]

The effect of thermal stresses on the immune system of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelechiidae)

نویسندگان [English]

  • zahra pourali 1
  • maryam aja, hassani 2
1 student in Shahrood University of Technology
چکیده [English]

The hemocytes of insects are one of important components of immune system of insects against various stresses such as pathogens attack, parasitoids, starvation period and temperature changes. Hemocytes characteristics recognition and frequency in cellular immune studies will help us in order to better pest control. In this study hemocytes of fourth instar larvae of potato tuber moth Phthorimaea operculella (Zeller)were identified after staining with Giemsa and by light microscopy at 40x magnification. Five types of identified hemocytes were prohemocytes (PRs), plasmatocytes (PLs), granulocytes (GRs), oenocytoids (OEs) and spherulocytes (SPs). The effect of different thermal stresses was also investigated for 24 hours on cellular defense of fourth instar larvae. In addition number of various hemocytes and total number of blood cells were investigated. At 35 °C, total hemocyte count (THC) and PLs of larvae was increased significantly compared to the control (25±1 °C). Also, chill stress
(4 °C) showed a significant decrease in THC, PLs and OEs compared to the control. These findings could be used as a base for further investigation on the immunology studies of potato tuber moth.

 

کلیدواژه‌ها [English]

  • Phthorimaea operculella
  • Hemocytes
  • Cellular defense
  • heat and chill stresses
  • Total Hemocyte Count

Ajamhassani, M., Sendi, J. J,. Zibaee, A., Askary, H. & Farsi, M. J. (2013) Immunoliogical Responses of Hyphantria Cunea (Drury) (Lepidoptera: Arctiidae) to Entomopathogenic Fungi, Beauveria Bassiana (Bals.-Criy) and Isaria Farinosae (Holmsk.) Fr. Journal of Plant Protection Research 53, 110-118.

Akai, H. & Sato, S. (1973) Ultrastructure of the larval hemocytes of the silkworm, Bombyx mori (Lepidoptera: Bombycidae). Int. Journal of Insect Morphological Embryology 2, 207-31.

Arnold, J. W. (1952) The hemocytes of the mediterranean flour moth, Ephestia kuhniella Zell. (Lepidoptera: Pyralidae). Canadian Journal of Zoology 30, 352-364.

Arnone, S., Musmeci, S., Bacchetta, L., Cordischi, N., Pucci, E., Cristofaro, M. & Sonino, A. (1998) Research in Solanum spp. As sources of resistance to the potato tuber moth Phthorimaea operculella (Zeller). The European Journal of Potato Research 41, 39-49.

Bacon, O. G,. McCalley, N. F., Riley, W. D. & James, R. H. (1972) Insecticides for control of potato tuber worm and green peach aphid on potatoes in California. American Potato Journal 49, 291-295.

Behera, M. K., Behera, R. and Patro, B. (1999) Studies on the hemocytes of the common chrysanthemum aphid, Macrosiphoniella sanborni. Indian Journal of Entomology 61, 51-55.

Brehélin, M., Drif, L., Baud, L. & Boemare, N. (1989) Insect haemolymph:cooperation between humoral and cellular factors in Locusta migratoria. Insect Biochemistry 19, 301-307.

Capinera, J. L. (2001) Handbook of vegetable pests. Academic Press, New York, USA.

Fenemore, P. G. (1988) Host-plant location and selection by adult potato moth, Phthorimaea operculella(Lepidoptera: Gelechiidae): a review. Journal of Insect Physiology 34,
175-177.

Gardiner, E. M. & Strand, M. R. (2000) Hematopoiesis in larval Pseudoplusia includens and Spodoptera frugiperda. Archives of Insect Biochemistry and Physiology 43,
147-164.

Ghasemi, V., Moharramipour, S. & Jalali Sendi, J. (2013) Circulating hemocytes of Mediterranean flour moth, Ephestia kuehniella Zell. (Lep: Pyralidae) and their response to thermal stress. Invertebrate Survival Journal 10, 128-140.

Gillespie, J. P., Burnett, C. & Charnley, A. K. (2000)The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var acridum. Journal of Insect Physiology 46, 429-437.

Gupta, A. P. (1985) Cellular elements in the haemolymph. In: Kerkut, G. A.,Gilbert, L. I. (Eds.), Comperhensive Insect Physiology, Biochemistry and Pharmacology. Cambridge University Press 85-127 pp.

Huang, F., Yang, Y., Shi, M., Li, J., Chen, Z., Chen, F. & et al. (2010) Ultrastructural and functional characterization of circulating hemocytes from Plutella xylostella larva: Cell types and their role in phagocytosis. Tissue Cell 42, 360-364.

Jones, J. C. (1962) Current concepts concerning insect hemocytes. Am. Zool 2, 209-246.

Jones, J. C. (1967a) Changes in the haemocyte picture of Galleria mellonella (Linnaeus). Biol. Bull 132, 211-221.

Jones, J. C. (1967b) Normal differential counts of haemocytes in relation to ecdysis and feeding in Rhodnius. J. Insect Physiol 13, 1133-1141.

 Jones, J. C. & Liu, D. Ρ. (1968) Α quantitative study of mitotic divisions of haemocytes of Galleria mellonella larvae. J. Insect Physiol 14, 1055-1061.

Khosravi, R., Jalali Sendi, J. & Ghasemi, V. (2012) Identification of hemocytes in carob moth, Ectomoyelois ceratoniae Zeller (Lepidoptera: Pyralidae) larvae. Plant Pests Res 2, 29-39.

Kiuchi, T. F., Aoki, M. & Nagata, M. (2008) Effects of high temperature on the hemocyte cell cycle in silkworm larvae. The Journal of Insect Physiology 54, 454-461.

Lackie, A. M. (1988) Hemocyte behaviour. Advances in Insect Physiology 21, 85-178.

Lai-Fook, J. & Neuwirth, M. (1972) The importance of methods of fixation in the study of insect blood cells. Can. J. Zool 50, 1011-1013.

Ling, E. & Yu, X. Q. (2006) Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells. Dev. Comp. Immunol 30, 301-309.

Mahmood, A. & Yousaf, M. (1985)Effect of some insecticides on the hemocytes of Gryllus bimaculatus de Geer. Pakistan Journal of Zoology 17, 71-84.

Mowlds, P. & Kavanagh, K. (2008) Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia 165,
5-12.

Okazaki, T., Okudaira, N., Iwabuchi, K., Fugo, H. & Nagai, T. (2006) Apoptosis and adhesion of hemocytes during molting stage of silkworm, Bombyx mori. Zool. Sci 23, 299-304.

Pandey, J. P., Tiwari, R. K. & Chaubey, A. K.  (2003) Studies on hemocytes of
lemon-butterfly, Papilio demoleus L. under certain stress conditions. The Journal of animal morphology and physiology 50, 33-44.

Pandey, J. P., Tiwari, R. K. & Kumar, D. (2008a) Reduction in haemocyte mediated immune response in Danaus chrysippus following treatment with neem-based insecticides. The Journal of Entomology 5, 200-206.

Pandey, J. P., Tiwari, R. K. & Kumar, D. (2008b) Temperature and Ganglionectomy Stresses Affect Haemocyte Counts in Plain Tiger Butterfly, Danaus chrysippus L. (Lepidoptera: Nymphalidae). Journal of Entomology 5, 113-121.

Pandey, J. P., Mishra, P. K., Kumar, D., Singh, B .M .K. & Prasad, B. C. (2010) Effect of temperature on hemocytic immune responses of tropical tasar silkworm, Antheraea mylitta D. The Journal of Immunology Research 3, 169-177.

Ratcliffe, N. A. (1993) Cellular defense responses of insects: Unresolved problems. In: Beckage NE, Thompson SN, Federici BA (eds). Parasites and Pathogens of Insects, vol. I. Academic Press, San Diego, CA 267-304 pp.

Ribeiro, C. & Brehelin, M. (2006) Insect haemocytes: What type of cell is that. The Journal of Insect Physiology 52, 417-429.

Rosenberger, C. R. & Jones, J. C. (1960) Studies on the total blood cell counts of the southern armyworm larvae, Prodenia eridania (Lepidoptera). Annals of the Entomological Society of America 53, 351-355.

Strand, M. R. & Pech, L. L. (1995) Immunological basis for compatibility in
parasitoid-host relationships. Annu. Rev. Entomol 40, 31-56.

Tan, J., Xu, M., Zhang, K., Wang, X., Chen, S., Li, T., Xiang, Z. & Cui, H. (2013) Characterization of hemocytes proliferation in larval silkworm, Bombyx mori. J. Insect Physiol 59, 595-603.

Tauber, O. E. & Yeager, J. F. (1935) On the total haemolymph (blood) counts of insects. I. orthoptera, odonata, hemiptera and homoptera. Annals of the Entomological Society of America 28, 229-240.

Tiwari, R. K. & Shukla, R. S. (2000) Effect of certain stresses and 20-hydroxyecdysone injection on total haemocyte count in lemon-butterfly, Papilio demoleus L. (Lepidoptera). Proceedings of the National Academy of Sciences, India  70, 243-254.

Tiwari, R. K., Pandey, J. P. & Kumar, D. (2006) Effects of neem-based insecticides on metamorphosis, haemocytes and reproductive behaviour in the red cotton bug, Dysdercus koenigii Fabr. (Heteroptera: Pyrrhocoridae). Journal of Entomology 31,
267-271.

Tojo, S., Naganuma, F., Arakawa, K. & Yokoo, S. (2000) Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J. Insect Physiol 46, 1129-1135.

Tu, Z. L., Kobayashi, Y., Kiguchi, K., Watanabe, H. & Yamamoto, K. (2002) Effects of heavy-ion radiosurgery on the hemopoietic function of the silkworm Bombyx mori. J. Radiat. Res 43, 269-275.

Wigglesworth, V. B. (1972) The Nervous System: The Principles of Insect Physiology. ELBS and Methuen and Co. Ltd., London 156-186 pp.

Yeager, J. F. (1945) The blood picture of the southern armyworm (Prodenia eridania). Journal of Agricultural Research 71, 1-40.