تولید پشه های بالغ (Dip.: Culicidae) Culex pipiens آلوده به نماتود انگل Strelkovimermis spiculatus (Nematoda: Mermithidae) جهت کنترل به شیوه خود انتشاری

نوع مقاله: مقاله کامل، فارسی

نویسندگان

1 محقق عضو هیات علمی موسسه تحقیقات گیاهپزشکی

2 گروه گیاهپزشکی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

کنترل زیستی پشه‌های ناقل با استفاده از نماتودهای انگل حشرات به دلیل ماهیت ایمن و کم خطر روش، اهمیت خاصی در مدیریت تلفیقی پشه‌ها دارد. نماتود انگل Strelkovimermis spiculatus به‌طور طبیعی مراحل لارویCulex pipiensرا پارازیته می‌کند و در طبیعت به ندرت حشرات کامل Culex آلوده به این نماتود هستند. این پدیده کمیاب به عنوان راهی برای انتقال نماتود تصور می‌شود. پیش فرض مطالعه حاضر این بود که پشه های بالغ آلوده به نماتود را از طریق دست کاری‌های آزمایشگاهی می‌توان تولید کرد. سن میزبان و نسبت میزبان: انگل دو فاکتور اصلی مورد بررسی بودند. برای تعیین مرحله لاروی مناسب، لاروهای اواخر سن سه، اوایل و اواخر سن چهار و هم‌چنین برای برآورد نسبت بهینه میزبان: انگل، نسبت‌های ١:٥ - ١٠:١ - ٢٠:١ - ٤٠:١ از لحاظ درصد استحصال پشه‌های بالغ آلوده باهم مقایسه شدند. میانگین زمان خروج نماتودها از حشرات کامل به منظور تعیین زمان مناسب رهاسازی اندازه‌گیری شد. برای کنترل کیفی، نسبت جنسی، تعداد و طول پسا‌انگل‌های خارج شده از حشرات کامل نیز محاسبه و مورد مقایسه قرار گرفتند. در نسبت ١:٥ تنها لاروهای اواخر سن چهار به بالغین آلوده تبدیل شدند و حداکثر درصد بالغین آلوده ٣٩/١٧ درصد از کل بالغین بود. نسبت ١٠:١ به عنوان نسبت آلوده‌سازی مرجع انتخاب شد (٨٧/٠P=). میانگین دوره زمانی از آلوده‌سازی تا خروج نماتودها از حشرات کامل، 51/0±37/7 روز به‌دست آمد. نسبت افراد ماده به کل در نماتودهای خارج شده از حشرات کامل برابر با ١:٤/٠ بود و تفاوت معنی‌داری بین طول نماتودهای حاصل از حشرات کامل و لاروها وجود نداشت )١٤/٠(P=. آلوده ساختن انفرادی لاروهای اواخر سن چهار با نسبتآلوده‌سازی ١٠:١درآبگونه‌ای از سوسپانسیون نماتود و رهاسازی بالغین نر هفت روز پس از آلوده‌سازی، راهکاری عملی و مناسب برای کاربرد این نماتود در طبیعت است.

کلیدواژه‌ها


عنوان مقاله [English]

Production of Culex pipiens (Dip.: Culicidae) adults infected by Strelkovimermis spiculatus (Nematoda: Mermithidae) in autodissemination control strategy

نویسندگان [English]

  • Hana Haji Allahverdipour 1
  • Reza Talaei-Hassanloui 2
1 Researcher, Iranian Research Institute of Plant Protection
2 Dept. Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Biological Control of mosquito vectors with insect parasitic nematodes is of importance in Integrated Mosquito Management (IMM) due to its benign nature. The mosquito parasitic mermithid Strelkovimermis spiculatus normally parasitizes larval stages of Culex pipiens and rarely do adults of Culex get infected by this nematode in wild. This infrequent phenomenon is assumed as the way of nematode dispersal. We hypothized that infected mosquito adults can be obtained through laboratory manipulations. Parasite: host ratio and host stage were two main parameters to consider. To determine the optimal larval instar and parasite:host ratio, late third, early fourth, late fourth instar larvae and 5:1, 10:1, 20:1, 40:1 ratios were compared and the percentage of infected adult mosquitoes obtained recorded. Average nematode emergence time was measured to to estimate the proper release time of the mosquitoes in larval habitats. The sex ratio, number and length of postparasites emerged from adults were also calculated and compared in quality control process. Only late fourth instars infected adult host at 5:1 with a maximum proportion of infected adults of 17.39%. The ratio of 10:1 was chosen as standard infection ratio (P=0.87). The average duration between infection and nematode emergence was 7.37±0.51 (days). The proportion of females to total emerged nematodes from adults was 0.4:1 which is an acceptable ratio for nematodes’ colonization in water bodies. There was no statistical difference between the length of nematodes emerged from mosquito adults and larvae (P=0.14). Infecting late fourth instars individually at 10:1 infection ratio in an aliquot of nematode suspension and release of infected males seven days post-infection is a feasible strategy for application of this nematode in wild. 

کلیدواژه‌ها [English]

  • insect parasitic nematodes
  • Culex pipiens
  • control
  • autodissemination approach
  • Strelkovimermis

Achinelly, F. M.&Camino, N. B. (2005) Evaluation of the mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae) as alternative hosts for laboratory mass-rearing of Strelkovimermis spiculatus (Nematoda: Mermithidae). Nematology 7(2), 281-284.

Achinelly, F. M. & Micieli, V. M. (2011) Optimizing laboratory production of Strelkovimermis spiculatus (Nematoda: Mermithidae) with a discussion of potential release strategies for mosquito biological control. Biological Control 57, 31-36.

Anonymous (2013) 10 Genetically Modified Mosquitoes to Reduce Disease Threat. Available from: http://www.summit. clevelandclinic.org (accessed 14 June 2016).

Blackmore, M. S. (1994) Mermithid parasitism of adult mosquitoes in Sweden. The American Midland Naturalist 132(1), 192-198.

Camino, N. B. & Garcia, J. J. (1991) Influencia de la salinidad y el pH en el parasitismo de Strelkovimermis spiculatus Poinar y Camino, 1986 (Nematoda: Mermithidae) en larvas de Culex pipiens Wied. (Diptera: Culicidae). Neotropica 37(98), 107-112. [In Spanish with English abstract].

Campos, R. E. & Sy, V. E. (2003) Mortality in immatures of the floodwater mosquito Ochlerotatus albifasciatus (Diptera: Culicidae) and effects of parasitism by Strelkovimermis spiculatus (Nematoda: Mermithidae) in Buenos Aires province, Argentina. Memórias do Instituto Oswaldo Cruz 98(2), 199-208.

Di Battista, C. M., Fischer, S. & Campos, R. E. (2015) Prevalence of parasitism and adult survival time of Aedes albifasciatus (Diptera: Culicidae) parasitized by Strelkovimermis spiculatus (Nematoda: Mermithidae). Journal of Vector Ecology 40(2), 393-397.

Gajanana, A., Kazmi, S. J., Bheema Rao, U. S., Suguna, S. G. & Chandrahas, R. K. (1978) Studies on a nematode parasite (Romanomermis sp.: Mermithidae) of mosquito larvae in Pondicherry. Indian Journal of Medical Research 68, 242-247.

García, J. J., Campos, R. E. & Maciá, A. (1994) Prospección de enemigos naturales de culicidae (Diptera) de la selva marginal de punta lara (Prov. de Buenos Aires, República Argentina). Revista de la Academia Colombiana de Ciencias 19, 209-215.

Gaugler, R., Wang, Y., Chandel, K. & Suman, D. S. (2017) Collapsible stackable disposable inexpensive pesticide free traps and attractant for surveillance and control of Aedes container breeding mosquitos and other container breeding insects. United States Patent 20170000101. Available from: http://www.freepatentsonline.com/y2017/0000101.html.

Hughes, G. L. & Rasgon, J. L. (2014) Transinfection: a method to investigate Wolbachia-host interactions and control arthropod-borne disease. Insect Molecular Biology 23(2), 141-151.

Keller, S., Schweizer, C., Keller, E. & Brenner, H. (1997) Control of white grubs (Melolontha melolontha L.) by treating adults with the fungus Beauveria brongniartii. Biocontrol Science and Technology 7, 105-116.

Kurihara, T. & Maeda, R. (1980) Observations on the development of the nematode parasite Romanomermis culicivorax in pupal and adult, Culex pipiens molestus mosquitoes. Mosquito News 40, 643- 645.

Petersen, J. J., Chapman, H. C., Willis, O. R. & Fukuda, T. (1978) Release of Romanomermis culicivorax for the control of Anopheles albimanus in El Salvador II. Application of the nematode. American Journal of Tropical Medicine and Hygiene 27(6), 1268-1273.

Petersen J. J., & Willis, O. R. (1974) Diximermis peterseni (Nematoda: Mermithidae): A potential biocontrol agent of Anopheles mosquito larvae. Journal of Invertebrate Pathology 24(1), 20-23.

Platzer, E. G. (2007) Mermithid nematodes. Journal of the American Mosquito Control Association 7, 58- 64.

Poinar, G. O. & Otieno, W. A. (1974) Evidence of four molts in the Mermithidae. Nematologica 20, 370-371.

Porter, A .G., Davidson, E.W. & Liu, J.W. (1993) Mosquitocidal toxins of bacilli and their genetic manipulation for effective biological control of mosquitoes. Microbiology and Molecular Biology Reviews 57(4), 838-861.

Shamseldean M. M., Platzer, E. G. & Gaugler, R. (2007) Role of the surface coat of Romanomermis culicivorax in immune evasion. Nematology 9, 17-24.

Silva-Filha, M. H. N. L., Berry, C. & Regis, L. (2014) Lysinibacillus sphaericus: toxins and mode of action, applications for mosquito control and resistance management. In: T. S. Dhadialla and S. S. Gill, ed. Advances in Insect Physiology: insect midgut and insecticidal proteins 47, 89-176.

Vinogradova, E. B. (2000) Mosquitoes Culex pipiens: taxonomy, distribution, ecology, physiology, genetics and control. PenSoft Press, Sofia, 1st ed., 4-44.

Washburn, J. O., Anderson, J. R. & Egerter, D. E. (1986) Distribution and prevalence of Octomyomermis troglodytis (Nematoda: Mermithidae), a parasite of the western tree hole mosquito, Aedes sierrensis. Journal of the American Mosquito Control Association 2, 341-346.

Zaim, M., Ladonni, H., Ershadi, M. R. Y., Manouchehri, A. V., Sahabi, Z., Nazari, M. & Shahmohammadi, H. (1988) Field application of Romanomermis culicivorax (Mermithidae: Nematoda) to control anopheline larvae in southern Iran. Journal of the American Mosquito Control Association 4(3), 351-355.