سازوکار مقاومت به دلتامترین در جمعیت‌های مزرعه‌ای مینوز برگ گوجه‌فرنگی Tuta absoluta (Lepidoptera: Gelechiidae)

نوع مقاله: مقاله کامل، فارسی

نویسنده

گروه گیاهپزشکی- دانشکده کشاورزی- دانشگاه بوعلی سینا- همدان

چکیده

مینوز برگ گوجه­فرنگی Tuta absoluta (Meyrick) یک تهدید جدی برای تولید گوجه­فرنگی در شرایط مزرعه و گلخانه محسوب می­شود. تحقیق حاضر با هدف بررسی حساسیت جمعیت­های مزرعه­ای مینوز برگ گوجه­فرنگی به حشره­کش دلتامترین و تعیین سازوکار مقاومت با استفاده از سینرژیست­ها انجام شده است. زیست­سنجی به روش غوطه‌وری برگ در محلول سمی و روی لاروهای سن دوم انجام شد. نرخ مقاومت محاسبه شده بین 88/1 تا 58/21 برابر در مقایسه با سویه حساس متغیر بود. در آزمون­های سینرژیسمی، از PBO، DEF و DEM جهت بررسی احتمال دخالت سیستم­های آنزیمی در ایجاد مقاومت استفاده شد. برگ­های آغشته به غلظت­های مناسب از هر سینرژیست به مدت 12 ساعت قبل از شروع زیست­سنجی با حشره­کش، جهت تغذیه در اختیار لاروهای سن 2 قرار داده شد. بالاترین غلظت از هر سینرژیست که در جمعیت حساس هیچ گونه تلفاتی را همراه نداشت، برای سینرژیست­های PBO، DEF و DEM به ترتیب عبارت بودند از 100، 100 و 120 میلی­گرم بر لیتر. بر خلاف DEM و DEF، PBO، مهار کننده منواکسیژنازهای وابسته به سیتوکروم پی 450، به طور معنی­داری سمیت دلتامترین را در هر سه جمعیت مزرعه­ای افزایش داد (بالاترین نرخ سینرژیسم 44/5). به نظر می­رسد که در شرایط موجود، استفاده صرف از ترکیبات پایرتروییدی جهت کنترل مینوز برگ گوجه­فرنگی از جهت گسترش مقاومت به صلاح نباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Mechanism of deltamethrin resistance in field populations of Tuta absoluta (Lepidoptera: Gelechiidae)

نویسنده [English]

  • Maryam Malekmohammadi
Dept. of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan
چکیده [English]

The tomato leaf miner Tuta absoluta (Meyrick) may pose a threat to both greenhouse and open-field tomato production. The aims of this study were: 1) to assess the susceptibility to deltamethrin of
seven field populations of T. absoluta in Hamedan province, in comparison with susceptible strain. 2) to investigate the effects of synergists for testing possible mechanisms involved in resistance.
Bioassays were done by leaf dipping method to determine the resistance level. Resistance ratios
calculated varied from 1.9- to 21.6-times (compared with the susceptible population). In synergism tests, PBO, DEF, and DEM were used to determine whether metabolism was involved in deltamethrin resistance. Tomato leaves treated with appropriate concentration of each synergist were fed to second instar larvae for 12 h. The concentrations of PBO, DEF, and DEM were 100, 100 and 120 mgL-1, respectively. These were the highest concentrations that caused no mortality in susceptible strain in preliminary tests. The cytochrome P450-dependent monooxygenase- inhibitor PBO significantly
synergized the activity of deltamethrin in the three greenhouse field populations (with the highest
synergism ratio of 5.4). No significant synergism of deltamethrin toxicity was observed when larvae were pretreated with the esterase-inhibitor DEF, and the glutathione depleter DEM, as indicated by the overlap in the 95% CL for treatment with deltamethrin alone or with deltamethrin +DEF/ DEM. 

کلیدواژه‌ها [English]

  • deltamethrin
  • field population
  • resistant to pesticides
  • Tomato leaf miner

Abbott, W. S. (1925) A method of computing the effectiveness of an insecticide.Journal of Economic Entomology 18, 265–267.

Afzal, M. B. S. & Shad S. A. (2015) Resistance inheritance and mechanism to emamectin benzoate in Phenacoccus solenopsis (Homoptera: Pseudococcidae). Crop Protection 71, 60–65.

Ahmad, M., Sayyed, A. H., Crickmore, N. & Saleem, M. A. (2007) Genetics and
mechanism of resistance to deltamethrin in a field population of Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science 63, 1002–1010.

Aizoun, N., Aikpon, R., Gnanguenon, V., Azondekon, R., Oke- Agbo, F., Padonou, G. G. & Akogbeto, M. (2014)Dynamics of insecticide resistance and effect of synergists piperonyl butoxide (PBO), S.S.S-tributylphosphorotrithioate (DEF) and ethacrynic
acid (ETAA or EA) on permethrin, deltamethrin and dichlorodiphenyltrichloroethane (DDT) resistance in two Anopheles gambiae s. l. populations from Southern Benin, West Africa. Journal of Parasitology and Vector Biology 6, 1–10.

Ardley, J. H. (1976)Synergized bioresmethrin as a potential grain protectant. Journal of Stored Products Research 12, 253–259.

Askari-Saryazdi G., Hejazi M. J., Ferguson J. S. & Rashidi M. R. (2015) Selection for chlorpyrifos resistance in Liriomyza sativaeBlanchard: cross-resistance patterns,
stability and biochemical mechanisms. Pesticide Biochemistry and Physiology 124, 86–92.

Baniameri, V. & Cheraghian, A. (2011) The current status of Tuta absoluta in Iran and initial control strategies. EPPO/IOBC/FAO/NEPPO Joint International Symposium on Management of Tuta absoluta (tomato borer, Lepidoptera: Gelechiidae) in
collaboration with the IRAC and IBMA. November 16–18, Agadir, Morocco. p: 20.

Bengston, M., Davies, R. A. H., Desmarchelier, J. M., Henning, R., Murray, W.,
Simpson, B. W.,  Snelson, J. T.,  Sticka, R.  & Wallbank, B. E.
(1983)
Organophosphorothioates and synergized synthetic pyrethroids as grain protectants on bulk wheat. Pesticide Science 14, 373–384.

Daglish, G. J., Eelkema, M. & Harrison, L. M. (1995)Chlorpyrifos-methyl plus either methoprene or synergized phenothrin for control of Coleoptera in maize in
Queensland, Australia. Journal of Stored Products Research 31, 235–241.

Delorme, R., Fournier, D., Chaufaux, J., Cuany, A., Bride, J. M., Auge, D. & Berge, J. B. (1988) Esterase metabolism and reduced penetration are causes of resistance to
deltamethrin in Spodoptera exigua HUB. (Lepidoptera: Noctuidea). Pesticide
Biochemistry and Physiology
32, 240–246.

Desneux, N., Wajnberg, E., Wyckhuys, K. A. G., Burgio, G.,Arpaia, S.,
Narvaez-Vazquez, C. A., Cabrera, J. G., Catalan
Ruescas, D., Tabone, E.,
Frandon, J., Pizzol, J., Poncet,
C., Cabello, T. & Urbaneja, A. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197–215.

Dittrich, V., Ernst, G. H., Ruesh, O. & Uk, S. (1990)Resistance mechanisms in
sweetpotato whitefly (Homoptera: Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. Journal of Economic Entomology 83, 1665–1670.

Feyereisen, R. (1999) Insect P450 enzymes. Annual Review of Entomology 44, 507–533.

Goldin, A. L. (2003) Mechanisms of sodium channel inactivation. Current Opinion in Neurobiology 13, 284–290.

Gontijo, P. C., Picanco, M. C., Pereira, E. J. G., Martins, J. C., Chediak, M. & Guedes,R. N. C. (2013) Spatial and temporal variation in the control failure
likelihood of the tomato leaf miner, Tuta absoluta. Annals of Applied Biology, 162, 50–59.

Guedes R. N. C., Picanco M. C. (2012) Tuta absoluta in South America: pest status,
management and insecticide resistance. Bulletin OEPP/EPPO Bulletin 42, 211–216.

Gunning, R. V., Moores, G. D. & Devonshire, A. L. (1999) Esterase Inhibitors Synergise the Toxicity of Pyrethroids in Australian Helicoverpa armigera (Hübner)(Lepidoptera: Noctuidae). Pesticide Biochemistry andPhysiology 63, 50–62.

Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L. M.,Gorman, K., Rapisarda, C., Williamson, M. S. & Bass, C. (2012)  Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry andMolecular Biology 42, 506–513.

Hemingway, J. & Ranson, H. (2000). Insecticide resistance in insect vectors of human diseases. Annual Review of Entomology 45, 371–391.

Ishaaya, I. (1993) Insect detoxifying enzymes: their importance in pesticide synergism and resistance. Archives of Insect Biochemistry and Physiology 22, 263–276.

Ishtiaq, M., Saleem, M. A. & Wright, D. J. (2012) Stability, cross resistance and effect of synergists, PBO and DEF, on deltamethrin resistant strain of Spodoptera exigua
(Lepidoptera: Noctuidae) from Pakistan. Pakistan Journal of Zoology 44, 1677–1682.

Jao, L. T. & Casida, J. E. (1974)Esterases inhibitors as synergists for
(+)-trans-chrysanthemate insecticide chemicals. Pesticide Biochemistry and
Physiology, 4, 456–464.

Kang, C. Y., Wu, G. & Miyata, T. (2006) Synergism of enzyme inhibitors and
mechanisms of insecticide resistance in Bemisia tabaci (Gennadius) (Hom.,
Aleyrodidae). Journal of Applied Entomology 130, 377–385.

Kasai, S., Weerashinghe, I. S.  & Shono, T. (1998) P450 monooxygenases are an
important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Archive of Insect Biochemistry and Physiology 37, 47–56.

Kasai, S., Weerashinghe, I. S., Shono, T. & Yamakawa, M. (2000)Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochemistry and Molecular Biology 30, 163–171.

Kostaropoulos, I., Papadopoulos, A. , I., Metaxakis, A. Boukouvala, E. &
Papadopoulou-Mourkidou
, E. (2001) Glutathione S–transferase in the defence against pyrethroids in insects. Insect Biochemistry and Molecular Biology 31,
313–319.

Kumar, S., Thomas, A., Sahgal, A., Verma, A., Samuel, T. & Pillai, M. K. K. (2002)Effect of the synergist, piperonyl butoxide, on the development of deltamethrin
resistance in yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae). Archives of Insect Biochemistry and Physiology 50,1–8.

Lai, T., Li., J. & Su, J. (2011) Monitoring of beet armyworm Spodoptera exigua
(Lepidoptera: Noctuidae) resistance to chlorantraniliprole in China. Pesticide
Biochemistry and Physiology
101,198–205.

Li, X. C., Schuler, M. A. & Berenbaum, M. R. (2007) Molecular mechanisms of
metabolic resistance to synthetic and natural xenobiotics. Annual Review of
Entomology
52, 231–253.

Lietti, M. M. M., Botto, E. & Alzogaray, R. A. (2005) Insecticide resistance in Argentine populations of Tuta absoluta(Meyrick) (Lepidoptera: Gelechiidae). Neotropical
Entomology
, 34, 113–119.

Liu, N. & Scott, J. G. (1998) Increased transcription of CYP6D1 causes cytochrome
P450-mediated insecticide resistance in house fly. Insect Biochemistry and Molecular Biology 28, 531–535.

Low, W. Y., Ng, H. L., Morton, C. J. , Parker, M.W., Batterham, P. & Robin, C. (2007) Molecular evolution of glutathione S-transferases in the genus Drosophila.
Genetics 177, 1363–1375.

Malekmohammadi, M., Mossadegh, M. S., Hejazi, M. J., Goodarzi, M. T., Khanjani, M. & Galehdari, H. (2010) Synergism of resistance to phosalone and comparison of kinetic properties of acetylcholinesterase from four field populations and a susceptible strain of Colorado potato beetle. Pesticide Biochemistry and Physiology 98, 254–262.

Martin, S. H., Ottea, J. A., Leonard, B. R., Graves, J. B., Burris,  E., Micinski,  S. & Church, G. E. (1997). Effects of selected synergists and insecticide toxicity in
laboratory budworms (Lepidoptera: Noctuidae) inlaboratory and field studies. Journal of Economic Entomology 3, 723–721.

Mohan, M. & Gujar, G.T. (2003) Local variation in susceptibility of the diamondback moth, Plutella xylostella (Linnaeus), to insecticides and role of detoxification
enzymes. Crop Protection 22, 495–504.

Oliveira, F. A., da Silva, D. J. H.,  Leite, G. L. D., Jham, G. N. & Picanco, M. (2009) Resistance of 57 greenhouse-grown accessions of Lycopersicon esculentum and three cultivars to Tuta absoluta (Meyrick)  (Lepidoptera: Gelechiidae). Scientia
Horticulturae
, 119, 182–187.

Padonou, G. G., Sezonlin, M., Osse, R., Aizoun, N., Oke-Agbo, F., Oussou, O.,
Gbedjissi, G. & Akogbeto, M.
(2012). Impact of three years of large scale Indoor
Residual Spraying (IRS) and Insecticide Treated Nets (ITNs) interventions on
insecticide resistance in Anopheles gambiae s.l.in Benin. Parasites and Vectors 5,
1–11.

Pridgeon, J. W., Zhang,  L. & Liu, N. (2003)Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene 314, 157–163.

Reyes, M., Rocha, K.,  Alarcon, L., Siegwart, M. & Sauphanor, B. (2012) Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pesticide Biochemistry and Physiology 102, 45–50.

Rinkevich, F. D., Du, Y. & Dong, K. (2013) Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids. Pesticide Biochemistry and
Physiology
106, 93–100.

Riskallah, M. R. (1983)Esterases and resistance to synthetic pyrethroids in the egyptian cotton leaf worm. Pesticide Biochemistry and Physiology 19,184–189.

Robertson, J .L., Russel, R. M., Preisler, H. K. & Savin, N. E. (2007) Bioassays with Arthropods. 2 nd ed. CRC Press, Inc, Boca Raton, FL.

Robertson, J .L. & Preisler, H. K. (1992) Pesticide Bioassays with Arthropods. 1st ed. CRC Press, Inc, Boca Raton, FL.

Rodriguez, M. M., Hurtado, D., Severson, D. W. & Bisset, J. A. (2014) Inheritance of resistance to deltamethrin in Aedes aegypti(Diptera: Culicidae) from Cuba. Journal of Medical Entomology51, 1213–1219.

Roditakis, E., Skarmoutsou, C. & Staurakaki, M. (2013).Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Management Science 69, 834–840.

Romero, A., Potter, M. F. & Haynes, K. F. (2009) Evaluation of piperonyl butoxide as a deltamethrin synergist for pyrethroid-resistant bed bugs. Journal of Economic
Entomology
102, 2310–2315.

Saddiq, B., Shahzad Afzal, M. B. & Shad, S. A. J. (2016) Studies on genetics, stability and possible mechanism of deltamethrin resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) from Pakistan. Journal of Genetics 95, 1009–1016.

Samson, P. R. , Parker, R. J.  & Hall, E. A. (1990)Synergised deltamethrin as a
protectant against Sitophilus zeamaisMotsch. and S. oryzae (L.) (Coleoptera:
Curculionidae) on stored maize. Journal of Stored Products Research, 26, 155–161.

Sanchez-Arroyo, H., Koehler, P. G. & Valles, S. M. (2001) Effects of the synergists
piperonyl butoxide and S,S,S-tributyl phosphorotrithioate on propoxur
pharmacokinetics in Blatella germanica (Blattodea :Blatellidae). Journal of Economic Entomology 94, 209–216.

Sang, S., Shu, B., Yi, X., Liu, J., Hu, M. & Zhong, G. (2016) Cross-resistance and
baseline susceptibility of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) to cyantraniliprole in the south of China. Pest Management Science 72, 922–928.

Sauphanor, B., Cuany, A., Bouvier, J.C., Brosse, V., Amichot, M. & Berge, J. B. (1997). Mechanism of resistance to deltamethrin in Cydia pomonella (L.)
(Lepidoptera: Tortricidae). Pesticide Biochemistry and Physiology 58,109–117.

Silva,W. M., Berger, M., Bass, C., Balbino, V. Q., Amaral, M. H. B., Campos, M. R. & Siqueira, H. A. A. (2015) Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta. Pesticide Biochemistry and Physiology 122, 8–14.

Silva, G. A., Picanco, M. C., Bacci, L., Crespo, A. L. B & Rosado, J. F. (2011) Control failure likelihood and    spatial dependence of insecticide resistance in the tomato
pinworm, Tuta absoluta. Pest Management Science 67, 913–920.

Siqueira, H. A. A., Guedes, R. N. C., Fragoso D. B. & Magalhaes,L. C. (2001)
Abamectin resistance and synergism in Brazilian populations of Tuta absoluta
(Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management 47, 247–251.

Siqueira, H. A. A., Guedes, R. N. C. & Picanco, M. C. (2000a) Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agriculture and Forest
Entomology
2, 147–153.

Siqueira, H. A. A., Guedes, R. N. C., Picanco, M. C. (2000b) Cartap resistance and
synergism in populations of Tuta absoluta (Lep., Gelechiidae). Journal of Applied
 Entomology
124, 233–238.

Soderlund, D. M. & Knipple, D. C. (2003) The molecular biology of knockdown
resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology 33, 563–577.

Thomas, A., Kumar, S. & Pillai, M. K. K. (1991) Piperonyl butoxide as a countermeasure for deltamethrin-resistance in Culex quinquefasciatus Say. Entomon 16, 1–10.

Thomas, J.  D., Ottea, J. A., Boethel, D. J. & Ibrahim, S. A. (1996) Factors influencing pyrethroid resistance in a permethrin-selected strain of the soybean looper,
Pseudoplusia includens (Walker). Pesticide Biochemistry and Physiology 55, 1–9.

Vontas, J. G., Small, G. J. & Hemingway, J. (2001) Glutathione S-transferases as
antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens.
Biochemical Journal 357, 65–72.

Wang, L., Zhang, Y., Han, Z., Liu, Y. & Fang, J. (2010) Cross‐resistance and possible mechanisms of chlorpyrifos resistance in Laodelphax striatellus (Fallén). Pest
Management Science
66, 1096–1100.

Wu, D., Scharf, M. E., Neal, J. J., Suiter, D. R. & Bennett, G. W. (1998)Mechanisms of fenvalerate resistance in the German cockroach, Blatella germanica (L.). Pesticide
Biochemistry and Physiology
61, 53–62.

Young, S. J., Gunning, R. V. & Moores, G. D. (2006) Effect of pretreatment with
piperonyl butoxide on    pyrethroid efficacy against insecticide-resistance Helicoverpa armigera (Lep.: Noctuidae). Pest management Science 62,114–119.

Zhu, Y. C. & Snodgrass, G. L. (2003)Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris
(Heteroptera: Miridae) having different susceptibilities to pyrethroid insecticide. Insect Molecular Biology 12, 39–49.

Zibaee, I., Bandani, A. L. & Sabahi, G. (2016) The expression profile of detoxifying
enzyme of tomato leaf miner, Tuta absoluta Meyrik (Lepidoptera: Gelechiidae) to chlorpyrifos. Arthropods 5, 77–86.  

Zlof, V. & Suffert, M. (2012) Report of the EPPO/FAO/ IOBC/NEPPO Joint International Symposium on management of Tuta absoluta (tomato borer). Bulletin OEPP/EPPOBulletin 42, 203–204.