ترکیب روش زمین‌ آمار با شبکه عصبی مصنوعی بهینه شده با الگوریتم ژنتیک در پیش‌بینی الگوی توزیع کفشدوزک هفت‌نقطه‌ایCoccinella septempunctata در مزرعه یونجه شهرستان باجگاه

نوع مقاله: مقاله کامل، فارسی

نویسندگان

1 گروه آموزشی گیاهپزشکی، دانشکده کشاورزی، دانشگاه رازی کرمانشاه

2 دانشجوی دکترا گرایش حشره شناسی، دانشکده کشاورزی، دانشگاه رازی کرمانشاه

3 گروه آموزشی گیاهپزشکی، دانشکده کشاورزی دانشگاه شیراز

چکیده

با پدید آمدن تکنیک‌های آماری قوی و شبکه‌های عصبی، مدل‌های پیش بینی کننده پراکنش موجودات به سرعت در اکولوژی توسعه پیدا کرده است. با توجه به دشواری نمونه برداری معمولا در این گونه مطالعات تعداد نمونه کافی وجود ندارد لذا برای رفع این مشکل در این پژوهش به منظور پیش بینی و ترسیم نقشه توزیع کفشدوزک هفت‌نقطه‌ایاز ترکیب روش کریجینگ با شبکه‌های عصبی پرسپترون چندلایه (MLP) ترکیب شده با الگوریتم ژنتیک در سطح مزرعه استفاده شد. داده‌های مربوط به جمعیت این آفت از طریق نمونه برداری از سطح یک مزرعه در شهرستان باجگاه در سال 13۹۲ بدست آمده. داده­ها توسط روش کریجینگ معمولی با نیم تغییرنمای کروی که بهترین عملکرد را داشت میانیابی شدند و به عنوان ورودی شبکه عصبی معرفی شدند. برای ارزیابی قابلیت شبکه‌های عصبی مورد استفاده در پیش بینی توزیع از مقایسه آماری پارامترهایی مانند واریانس، توزیع آماری بین مقادیر پیش بینی شده مکانی توسط شبکه عصبی و مقادیر واقعی آن‌ها استفاده شد. نتایج نشان داد که در فازهای آموزش و آزمایش بین مقادیر ویژگی‌های آماری واریانس و توزیع آماری مجموعه داده‌های واقعی و پیش بینی شده مکانی این آفت توسط شبکه عصبی ترکیب شده، تفاوت معنی­داری وجود نداشت. نقشه‌های ترسیم شده نشان داد که توزیع آفت تجمعی است.

کلیدواژه‌ها


عنوان مقاله [English]

An Application of Combined Geostatistics with Optimized Artificial Neural Network by Genetic Algorithm to estimate the distribution of Coccinella septempunctata (Col:. Coccinellidae) in the alfalfa farm of Bajgah

نویسندگان [English]

  • Ronak Mohamadddi 1
  • Alireza Shabani 2
  • Mahmood Alichi 3
1 department of plant protoction, college of agricalture, Razi university
2 Phd student department of plant protoction, college of agricalture, Razi university
3 Department of plant protoction, college of agricalture, Shiraz uviversity
چکیده [English]

Today, with the advance statistical techniques and neural networks, predictive models of distribution were rapidly developed in ecology. Due to the difficulty of sampling, there are usually not enough samples in such studies. Therefore, in order to predict and mapping the distribution of Coccinella
septempunctata
used the combination of the Kriging method with multilevel perceptron neural
networks (MLP) combined with genetic algorithm at the farm level. Population data of pest was
obtained in 2014 by sampling in 221 fixed points in the alfalfa farm of Bajgah. The data was interpolated by ordinary Kriging method with spherical variogram, which had the best performance, and introduced as a neural network input. To evaluate the ability combined geostatistics with optimized artificial neural network by genetic to predict the distribution used statistical comparison parameters such as mean, variance, statistical distribution and between predicted values and actual values. Results indicating that there was non-significant difference between statistical parameters such as average, variance, statistical distribution and also coefficient of determination in the observed and the estimated Coccinella septempunctata density. Our map showed that pest distribution was patchy.

کلیدواژه‌ها [English]

  • Artificial Neural Networks
  • Genetic algorithm
  • spatial distribution
  • Coccinella septempunctata

Ansari pour, A. & Shakarami, J. (2011). Study of ladybirds (Col.: Coccinellidae) in Khorramabad district and the first report of Hyperaspis quadrimaculata (Redtenbacher 1844) for Iranian fauna. Life Science Journal 8, 488-495.

Choudhury, S.K. & Bartarya, G. (2003). Role of temperature and surface finish in
predicting tool wear using neural network and design of experiments. International Journal of Machine Tools & Manufacture 10, 747–753.

De Alves, M.C., Da Silva, F.M., Moraes, J.C., Pozza, E.A., De Oliveira, M.S., Souza, J.C.S & Alves, L.S. (2011).Geostatistical analysis of the spatial variation of the berry borer and leaf miner in a coffee agroecosystem. Precision Agriculture 12, 18–31.

Freeman, J. & Sakura, D. (2005). Neural Networks: Algorithms, Applications, and
Programming Techniques. 1thed.372pp. Addison-Wesley, Berlin.

Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnell, R. B. & Viau, A. A. (2003).Classification of hyper spectral data by decision trees and artificial neural
networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture 39, 67–93.

Gressie, N. (1993). Statistics for spatial data. 1thed. 550 pp. John Wiley, New York.

Goldberg, D. (1999). Genetic algorithms in search optimization and machine learning.2thed.320pp. Addison-Wesley Longman Publishing Company. Boston.

Habashi, H., Hosseini, M., Mohammadi, J. & Rahmani, R. (2007).Geostatistic applied in forest soil studding process. Journal of Agricultural Science and natural Resources 14, 1–10. [In Persian with English summary]

Hagen, J.S. (1962). Biology and ecology of predaceous Coccinllidae. Annual Review of
Entomology
7, 289-326.

Hasani Pak, A. (2007).Geostatistics. 3thed. 538 pp. University of Tehran Press. [In Persian]

Heykin S. (1999).  Neural network, a comprehensive foundation. 1thed. 572 pp. John Wiley & Sons, New York.

Honek, A. & Martinkova, Z. (2005). Long term changes in abundance of Coccinella
septempunctata
L. (Coleoptera: Coccinellidae) in the Czech Republic. European
Journal of Entomology
102, 443-448.

Hodek, I. (1973). Biology of Coccinellidae. Academia publishing house of the
czechoslosvak, Academy of Sciences Pragus, 260pp.

Isman, M. (1999). Pesticides based on plant essential oils. Pesticide. Crop Protection 18, 603–608.

Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., Boote, k. J. & Paz, J. (2006).
Artificial neural network model as a data analysis tool in precision farming.
Transactions of the American Society of Agricultural and Biological Engineers 49, 2027-2037.

Katherine, A.R. (2001). Geostatistic using SAS software. Owen analytic inc. Deep. River, CT., 6 pp.

Kianpour, R., Fathipour, Y., Kamali, K. & Naseri, B. (2010). Bionomics of Aphis
gossypii
(Homoptera: Aphididae) and its predators Coccinella septempunctata and
Hippodamia variegata (Coleoptera: Coccinellidae) in natural conditions. Journal of
Agricultural Science and Technology
12, 1-11.

Kim, K. (2006). Artificial Neural Network with evolutionary instance selection for financial forcasting. Expert systems with application 30, 519–526.

Kumar, D. N., R. K, Srinivasa and B. Ashok. (2006). Optimal reservoir operation for
irrigation of multiple crops using genetic algorithms. Journal of Irrigation Drainage
Engineering
132, 123-129.

Castera, I. & Boyd, M. (1996). Designing an artificial neural network for forecasting
financial and economic time series. Neurocomputing 12, 13–19.

Liebhold, A.M., Zhang, X., Hohn, M.E., Elkinton, J.S., Ticehurst, M., Benzon, C.L. & Campbell, R.W. (1991).Geostatistical analysis of Gypsy moth (Lepidoptera: Lymantridae) egg mass population. Environmental Entomology 20, 1407–1417.

Lohn J.D., W. Kraus, G. Haith. (2002). Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization. Proceedings of the 2002 IEEE Congress on
Evolutionary Computation
, pp. 1157-1162.

Latifian, M. & Soleymannejadian, E. (2009). Study of the Lesser moth Batrachedra
amydraula
(Lep.: Batrachedridae) distribution based on geostatistical models in Khuzestan province. Journal of Entomological Research 1, 43–55.[In Persian with
English summary]

Makarian, H., Rashed Mohassel, M. H., Bannayan, M. & Nassiri, M. (2007).Soil seed bank and seedling populations of Hordeum murinum and Cardaria draba in saffron fields. Agriculture Ecosystems and Environment 120, 307- 312.

Obrycki, J.J. & Kring, T. J. (1998). Pradaceus Coccinellidae in biological control. Annual Review of Entomology 43, 295-321.

Paredis, J. (1995). The symbiotic evolution of solutions and their representations. Pages 359 365 of: Eshelman, L. (ed), Proceedings of the sixth international conference on genetic algorithms. San Mateo, CA: Morgan Kaufmann.

Ribes-Dasi, M., Almacellas, J., Sió, J., Torà, R., Planas, S. & Avilla, J. (2005).the use of Geostatistics and GIS to optimise pest control practices in precision farming systems. Information and Technology for Sustainable Fruit and Vegetable Production 10,583–590.

Story, M. & Congalton, R.G. (1994).Accuracy assessment: A user’s perspective: L.K.
Fenester maleer. Remote sensing thematic assessment. American society for photogr
ammetry and remote sensing
12, 257–259.

ShafieeNasab, B., Shakarami, J., Mohiseni, A. & Jafari, S.H. (2015).Geostatistical
characteristics of the spatial distribution of the infestation pods by the pod borer,
Heliothis viriplaca Huf. (Lep: Noctuidae) in rain-fed chickpea (Cicer arietinum L.) fields in Delfan (Lorestan province). Plant Pests Research 5, 49–59. [In Persian with English summary]

Sciarretta, A., Trematerra, P. & Baumgärtner, J. (2001). Geostatistical analysis of Cydia funebrana (Lepidoptera: Tortricidae) pheromone trap catches at two spatial scales. American Entomologist 47, 174–184.

Shabani nejad, A. R. & Tafaghodinia, B. (2016). Evaluation of the ability of LVQ4
artificial neural network model to predict the spatial distribution pattern of Tuta
absoluta
in the tomato field in Ramhormoz. Journal of Entomological society of Iran 36, 195-204. [In Persian with English summary]

Shabani nejad, A. & Tafaghodiniya, B. (2017). Automatic clustering of data from sampling and evaluationg of neuro-fuzzy network tofor estimateinge the distribution of Bemisia. tabaci (Hem.: Aleyrodidae). Journal of Entomological society of Iran 37, 91-105. [In Persian with English summary]

Shabani nejad, A. R. & Tafaghodinia, B. (2016). Evaluation of Geostatistical Methods and Artificial Neural Network for Estimating the Spatial Distribution of Tetranychus urticae (Acari: Tetranychidae)in Cucumber field Ramhormoz. Journal of Applied
Entomology and Phytopathology
85, 22-30. [In Persian with English summary].

Shabani nejad, A. R., Tafaghodinia, B. & Zandi- Sohani, N. (2016). Hybrid neural
network with genetic algorithms for predicting distribution pattern of Tetranychus
urticae T. in cucumbers field of Rāmhormoz. Persian journal of Acarology 8, 240-252.

Shu-Heng, C. (2002). Genetic Algorithm and Genetic Programming in Computational
Finance. 1thed. 389 pp. Springer Kluwer Acadamic Publications.

Vellido, A., Liboa, P. J. G. & Vaughan, J. (2010). Neural Networks in Business: a Survey of Applications. Expert Systems with Application 19, 12-24.

Shanker, M., Hu, M. Y., Hung, M. S. (1996). Effect of data standardization on neural
networks training. Omega, 24, 385-397.

Seraj A. A. (2011). Principle of Plant pest control. 7745pp. Shahid chamran Press.

Wright, R.J., Devries, T.A., Young, L.J., Jarvi, K.J. & Seymout, R.C. (2002)
Geostatistical analysis of small­scale distribution of European corn borer (Lepidoptera: Crambidae) larvae and damage in whorl stage corn. Environmental Entomology 31, 160–167.

Young-S.P., Ja-Myung, K., Buom-Young, L., Yeong-Jin, L. & YooShin, K. (2000). Use of an artificial neural network to predict population dynamics of the forest–pest pine needle gall midge (Diptera: Cecidomyiida).Environmental Entomology, 29, 1208–1215

Zhang, W. J., Zhong, X. Q. & Liu, G. H. (2008).Recognizing spatial distribution patterns of grassland insects: neural network approaches. Stochastic Environmental. Research and Risk Assessment 22, 207–216.

Zhang, Y. F. & Fu, J. Y.H. (1998).A neural network approach for early cost estimation of packaging products. Computers & Industrial Engineering, 34, 433-50.