Effect of cold acclimation and rapid cold hardiness on cold tolerance and cryoprotectants of the greenbug Schizaphis graminum (Hemiptera: Aphididae)

Document Type : Paper, English

Authors

1 Department of Entomology, Faculty of Agriculture, University of Tarbiat Modares, Tehran, Iran

2 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran

Abstract

Insects can increase their survival at subzero temperatures, prior to long or short term exposure, to non-lethal cold temperatures by cold acclimation (ACC) or rapid cold hardiness (RCH). In this research, the effect of rapid or gradual decrease in temperatureon cold tolerance of adults of the greenbug, Schizaphis graminum (Rondani) was investigated. LT50 (lower lethal temperature for 50% mortality) of aphids acclimated at 10 °C for one week showed no significant differences with control (aphids reared at 20 °C). In addition to the cold acclimation, adults of S. graminum showed RCH response too.When the rearing aphids at 20 °C were transferred directlyto a range of sub-zero temperatures for 2 h, LT80 (lower lethal temperature for 80% mortality) was -11.6 °C, but acclimation at 0 °C for 5 h before transfer to -11.6 °C, induced maximum RCH, led to increase of survival to 73%. RCH was induced by cooling of the insects at 0 °C for different rates.Maximum survival (66%) was achieved by cooling at 0.05 °C/min. Accumulationof sugars and polyols is one of the major mechanismsunderlying ACC and RCH. In this study, trehalose and glucose increased considerably through ACC and RCH treatments, suggesting the role of these compounds in increasing cold tolerance of S. graminum

Keywords


Al-Mousawi, A. H., Richardson P. E. & Burton, R. L. (1983) Ultrastructural studies on greenbug (Hemiptera: Aphididae) feeding damage to susceptible and resistant wheat cultivars. Annals of the Entomological Society America 71, 964–971.
Atapour, M. & Moharramipour, S. (2009) Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae). Environmental Entomology38, 260–265.
Blackman, R. L. & Eastop, V. F. (2000) Aphids on the World's Crops, An Identification and Information Guide. 2nd Ed. 476 pp. John Wiley & Sons Ltd., England.
Chen, C. P., Denlinger, D. L. & Lee, R. E. (1987) Cold–shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology60, 297–304.
Gorena, R. (2004) Characterization of Schizaphis graminum (Rondani) (Homoptera: Aphididae) biotype evolution via virulence and fitness on Sorghum bicolor (L.) Moench and Sorghum halepense (L.) Persoon. Texas A & M University, 165 pp.
Hamedi, N. & Moharramipour, S. (2013) Long-term cold response in overwintering adults of ladybird Hippodamia variegata (Coleoptera: Coccinellidae). Journal of  Crop protection 2 (2), 119–126.
Hazell, S. P., Groutides, C., Neve, B. P., Blackburn, T. M. & Bale, J. S. (2010) A comparison of low temperature tolerance traits between closely related aphids from the tropics, temperate zone, and Arctic. Journal of Insect Physiology 56, 115–122.
Hemmati, C., Moharramipour, S. & Talebi, A. A. (2014) Effects of cold acclimation, cooling rate and heat stress on cold tolerance of the potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechiidae). European Journal of Entomology 111(4), 487–494.
Hoffmann, A. A., Sørensen, J. G. & Loeschcke, V. (2003) Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of thermal Biology 28, 175–216.
Jones, D. B., Giles, K. L. &. Elliott, N. C. (2008) Supercooling Points of Lysiphlebus testaceipes and Its Host Schizaphis graminum. Environmental Entomology 37(5), 1063–1068.
Ju, R. T., Xiao, Y. Y. & Li, B. (2011) Rapid cold hardening increases cold and chilling tolerances more than acclimation in the adults of the sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae). Journal of Insect Physiology 57, 1577–1582.
Kelty, J. D. & Lee, R. E. (1999) Induction of rapid cold hardening by cooling at ecologically relevant rates in Drosophila melanogaster.Journal of Insect Physiology 45, 719–726.
Khani, A., Moharramipour, S. & Barzegar, M. (2007) Cold tolerance and trehalose accumulation in overwintering larvae of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). European Journal of Entomology 104, 385–392.
Knight, J. D. & J. S. Bale. (1986) Cold hardiness and overwintering of the grain aphid Sitobion avenae. Ecological Entomology 11,189–197.
Kostal, V., Slachta, M. & Simek, P. (2001) Cryoprotective role of polyols independent of the increase in supercooling capacity in diapausing adults of Pyrrhocoris apterus (Heteroptera: Insecta). Comparative Biochemistry and Physiology Part B 130, 365–374.
Larsen, K. J. & Lee, R. E. (1994) Cold tolerance including rapid cold hardening and Inoculative freezing of fall migrant monarch butterflies in Ohio. Journal of Insect
Physiology 40, 859–864.
Lee, R. E., Chen, C. P. & Denlinger, D. L. (1987) A rapid cold–hardening process in insects. Science 238, 1415–1417.
Lee, R. E. & Denlinger, D. L. (1991) Insects at Low Temperatures. Chapman & Hall, New York.
Lee, Jr. R. E., Damodaran, K., Yi, S. X. & Lorigan, G. A. (2006) Rapid coldhardening increases membrane fluidity and cold tolerance of insect cells. Cryobiology 52, 459–463.
Li, Y. P., Goto, ­M., Ito, S., Sato, Y., Sasaki, K. & Goto, N. (2001) Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea in Japan. Journal of Insect Physiology 47, 1181–1187.
McDonald, J. R., Bale, J. S. & Walters, K. F. A. (1997) Rapid cold hardening in the western flower thrips Frankliniella occidentalis. Journal of Insect Physiology 43, 759–766.
Michaud, M. R. & Denlinger, D. L. (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. Journal of Comparative Physiology B, 177(7):753–63.
Murphy, H. C. (1959) The epidemic of barley yellow dwarf on oats in 1959: Introduction. Plant Disease Reporter Supplement 262, 316.
Powell, S. J. & Bale, J. S. (2004) Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae).Journal of Insect Physiology 50, 277–284.
Powell, S. J. & Bale, J. S. (2008) Intergenerational acclimation in aphid overwintering. Ecological Entomology 33, 95–100.
Pullin, A. S. & Bale, J. S. (1989) Effects of low temperature on diapausing Aglais urticae and Inachis io (Lepidoptera: Nymphalidae): overwintering physiology. Journal of Insect Physiology 35, 283–290.
Qiang, C. K., Du, Y. Z., Yu, L. Y., Cui, Y. D., Zheng, F. S. & Lu, M. X. (2008) Effect of rapid coldhardening on the cold tolerance of the larvae of the rice stem borer, Chilo suppressalis (Walker). Agricultural Sciences in China 7, 321–328.
Rako, L. & Hoffmann, A. A. (2006) Complexity of the cold acclimation response in Drosophila melanogaster. Journal of Insect Physiology 52, 94–104.
Saeidi, F., S. Moharramipour, S. & Barzegar, M. (2012). Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae).Environmental Entomology 41: 1638–1643.
Shintani, Y. & Ishikawa, Y. (2007) Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle Psacothea hilaris, Journal ofInsect Physiology 53, 1055–1062.
Storey, K. B. & Storey, J. M. (1991) Biochemistry of cryoprotectants. pp: 64–93. in Denlinger, L. and Lee, R. E. (Eds.). Insect at Low Temperature. 513 pp Chapman and Hall, New York.
Vittinghoff, E., Glidden, D., Shiboski, S. & McCulloch, C. (2005) Regression methods in biostatistics: linear, logistic, survival and repeated measures models. Springer Science Business Media, New York.
Wang, X. H., Qi, X. L. & Kang, L. (2010) Geographic differences on accumulation of sugars and polyols in locust eggs in response to cold acclimation. Journal of Insect Physiology 56, 966–970.
Worland, M. R. & Convey, P. (2001) Rapid cold hardening in Antarctic  microarthropods.              Functional Ecology 15, 515–524.