Ali, A. & Rizvi, P. Q.(2010). Age and stage specific life table of Coccinella
septempunctata L. (Coleoptera: Coccinellidae) at varying temperatures. World Journal of Agricultural Sciences 6, 268-273.
Atashkari, K., Nariman-Zadeh, N., Gölcü M, Khalkhali A., Jamali, A. (2010). Modeling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Conversion and Management 48, 29–41.
Amanifard. N., Nariman-Zadeh, M., Borji, A., Khalkhali & Habibdoust, A. (2007). Modeling and Pareto Optimization of Heat Transfer and Flow Coefficients in Micro channels using GMDH Type neural Networks and Genetic Algorithms. Energy Conversion and Management 15, 32-40.
Craverner, T. L., & Roush, W. B. (2013). Improving neural network prediction of amino acid levels in feed ingredients. Journal of applied poultry research 78, 983- 991.
Elliott, N.C., & Kieckhefe, R.W. (1990). A thirteen-year survey of the aphidophagous insects of alfalfa. Prairie Naturalist 22, 87-96.
Elliott, N.C. & Micheis, G.J. (1997). Estimating aphidophagous Coccinellid population in alfalfa. Biological control 8, 43-51.
Filippi, A. M. & Jensen, J. R. (2006). Fuzzy learning vector quantization for hyper spectral coastal vegetation classification. Remote Sensing Environment 100, 512–530.
Goel, P. K., Prasher, S. O., Patel, R. M., Landry, J. A., Bonnell, R. B. & Viau, A. A. (2003). Classification of hyper spectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn. Computers and Electronics in Agriculture 39, 67–93.
Hagen, J.S. (1962). Biology and ecology of predaceous Coccinllidae. Annual Review of
Entomology 7, 289-326.
Hodek, I. (1973). Biology of Coccinellidae. Aeademia publishing house of theczecholosvak Academy of Sciences Pragus 260pp.
Honek, A. & Martinkova, Z. (2005). Long term changes in abundance of Coccinella
septempunctata L. (Coleoptera: Coccinellidae) in the Czech Republic. European Journal of Entomology 102, 443-448.
Irmak, A., Jones, J. W., Batchelor, W. D., Irmak, S., Boote, k. J. & Paz, J. (2006).
Artificial neural network model as a data analysis tool in precision farming.
Transactions of the American Society of Agricultural and Biological Engineers 49, 2027-2037.
Kianpour, R., Fathipour, Y., Kamali, K. & Naseri, B. (2010). Bionomics of Aphis gossypii (Homoptera: Aphididae) and its predators Coccinella septempunctata and Hippodamia variegata (Coleoptera: Coccinellidae) in natural conditions. Journal of Agricultural Science and Technology 12, 1-11.
Mittal, G., S, & Zhang, J. (2010). Prediction of temperature and moisture content of frankfurters during thermal processing using neural network. Journal of applied poultry research 70, 13-24.
Nariman-Zadeh, N., Darvizeh, A., Ahmad-Zadeh, G.R. (2013). Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modeling and
prediction of the explosive cutting process. Energy Conversion and Management 217, 79–90.
Shabani nejad, A. R. & tafaghodinia, B. (2016a) Evaluation of the Ability of LVQ4
Artificial Neural Network Model to Predict the Spatial Distribution Pattern of Tuta
absoluta in the tomato field in Ramhormoz. Journal of Entomological society of Iran, 36,195-204.
Shabani nejad, A. R. & tafaghodinia, B. (2016b) Evaluation of Geostatistical Methods and Artificial Neural Network for Estimating the Spatial Distribution of Tetranychus urticae (Acari: Tetranychidae) in Cucumber field Ramhormoz. Journal of Applied Entomology and Phytopathology 85, 22-30.
Shabani nejad, A. R., tafaghodinia, B., Zandi- sohani, N. (2016). Hybrid neural network with genetic algorithms for predicting distribution pattern of Tetranychus urticae T. in
cucumbers field of Rāmhormoz. Persian journal of Acarology 8, 240-252.
Shabani nejad, A. & Tafaghodiniya, B. (2017). Automatic clustering of data from sampling and evaluationg of neuro-fuzzy network to estimating the distribution of Bemisia. tabaci (Hem.: Aleyrodidae). Journal of Iranian Entomological Society 37, 91-105.
Shabani nejad, A. R., tafaghodinia, B., zandi- sohani, N. (2017). Evaluation of
Geostatistical Method and hybrid Artificial Neural Network with Imperialist Competitive Algorithm for predicting distribution pattern of Tetranychus urticae
(Acari: Tetranychidae) in cucumber field of Behbahan, Iran. Persian journal of
Acarology 8, 333-345.
Vakil-Baghmisheh, MT & N, Pavešic.(2003). Premature clustering phenomenon and new training algorithms for LVQ. Pattern recognition 36(5), 1901-1921.
Young-S.P., Ja-Myung, K., Buom-Young, L., Yeong-Jin, L. & YooShin, K. (2000). Use of an artificial neural network to predict population dynamics of the forest–pest pine needle gall midge (Diptera: Cecidomyiida).Environmental Entomology 29, 1208–1215.
Yuxin, M., D. J, Mulla & C. R, Pierre. (2006) Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision
Agriculture 7(2), 117–135.
Zhang, W. J., Zhong, X. Q. & Liu, G. H. (2008).Recognizing spatial distribution patterns of grassland insects: neural network approaches. Stochastic Environmental. Research and Risk Assessment 22, 207–216.
Zhang, Y. F. & Fu, J. Y.H. (1998).A neural network approach for early cost estimation of packaging products. Computers & Industrial Engineering 34, 433-50.