Biochemical properties of digestive carbohydrases and proteases of cereal leaf beetle, Lema melanopa (Coleoptera: Chrysomelidae)

Document Type : Paper, Persian

Authors

1 Plant Protection Research Department, Golestan Agricultural and Natural Resources Research Center, Agricultural Research, Education and Extension Organization, Gorgan, Iran

2 Department of Plant Protection, Agricultural Science Faculty, University of Guilan, Rasht, Iran

3 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organi-zation (AREEO), Tehran, Iran.

Abstract

In the recent decade, Lema melanopa L. has become one of the most important pests of wheat fields in Golstan province. Both adults and larvae of this pest feed on the leaves of most cereals and of course wheat and cause severe damage. Due to the lack of information about the physiology of this pest, in the present study, the biochemical properties of alpha amylase, glucosidase, galactosidase and gastrointestinal proteases from adult stage of this pest were investigated. The results showed that the highest level of optimal enzyme activity was observed in the range of 4 to 6 and the optimum temperature of 35 ° C. Electrophoresis showed two isoforms of alpha-amylase in the gut of the insect. The maximum activity of alpha and beta glucosidase enzymes and alpha and beta galactosidase of the gut was obtained in acidity 5 and in the temperature range of 35 to 45°C, respectively. The highest general protease activity was shown among gut proteases at pH 6 and at 45°C. Study Results of the effect of enzymatic inhibitors including EDTA, TLCK, TPCK, PMSF, sodium Iodo Acetate and Iodoacetic acid protease activity showed that cysteine proteinase inhibitors had the greatest inhibitory effect on enzyme activity. Therefore, it can be concluded that this group of proteases is dominant in the gut of cereal leaf beetle. By determining the biochemical properties of important gut enzymes of pest, compounds can be synthesized that are more efficient and reduce the consumption of insecticides and reduce the amount of damage to the environment.

Keywords


Ahmadi, M., Ebadzadeh, H. R., Hatami, F., Abedshahei, H. & Kazemiyan, A. (2018) Agricultural statistics of the crop year 2017-2018.  Vol. 1, 2th ed. 99 pp. Ministry of Jahad Agriculture, Deputy of Planning and Economy, Information and Communication Technology Center press. [In Persian].
Alarcon, F. J., Martýnez, T. F., Barranco, P., Cabello, T., Dýaz, M. & Moyano, F. J. (2002) Digestive proteases during development of larvae of red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae). Insect Biochemistry and Molecular Biology 32, 265-274.
Alfonso, J. F., Ortego, F., Sanchez-Monge, R., Garcia-Casado, G., Pujol, M., Castanera, P. & Salcedo, G. (2003) Wheat and barley inhibitors active towards α-amylase and trypsin- like actives from Spodoptera frgiperda. Journal of Chemical Ecology 23, 1729-1741.
Asadi, A., Ghadamyari, M., Sajedi, H. R., Jalali, J. & Tabari, M. (2010) Biochemical characterization of midgut, salivary glands and haemolymph α-amylases of Naranga aenescens. Bulletin of Insectology 63 (2), 175-181.
Baker, J. E. (1991) Properties of glycosidases from the maize weevil, Sitophilus zeamais. Insect Biochemistry 21(6), 615-621.
Bernfeld, P. (1955) Amylase, α and β. Methods in Enzymology 1, 149-151.
Bradford, M. (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
Budatha, M., Meur, G. & Datta-Gupta, A. (2008) Identification and characterization of midgut proteases in Achaeta janata and their implication. Biotechnology Letters 30, 305-310.
Chapman, R. F. (1998) The Insects Structure and function. Vol. 1, 4th ed. 782 pp. Cambridge University Press.
Cruz, W. O., Sinhori, G. G. C., Lima, C. A. R. & Pontes, E. G. (2018) Biochemical Properties of α-Amylase from Midgut of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) Larvae. Neotropical Entomology 47 (5), 698-708.
Davis, B. J. (1964) Disc electrophoresis II. Method and application to human serum proteins. Annals of the New York Academy of Sciences 12, 404- 427.
Dojnov, B., Loncar, N., Bozic, N., Nenadovic, V., Ivanovic, J. & Vujcic, Z. (2010) Comparison of α-amylase isoforms from the midgut of Cerambyx cerdo L. (Coleoptera: Cerambycidae) larvae developed in the wild and on an artificial diet. Archives of Biological Science Belgrade 62 (3), 575-583.
Ferry, N., Jouanin, L., Ceci, L. R., Mulligan, E. A., Emami, K., Gatehouse, J. A. & Gatehouse, A. M. (2005) Impact of oilseed rape expressing the insecticidal serine protease inhibitor, mustard trypsin inhibitor on the beneficial predator Pterostichus madidus. Molecular Ecology 14, 337–349.
Franco O. L., Rigden D. J., Melo F. R. & Grossi- de- sa M. F. (2002) Plant α-amylase inhibitors and their interaction with Insect α- amylases, structure, function and potential for crop protection. European Journal of Biochemistry 269(2), 397-412.
Franco, O. L., Dias, S. C., Magalhes, C. P., Monteiro, A. C., Bloch, C., Melo, F. R., Oliveira-Neto, O. B., Monnerat, R. G. & Grossi-de-Sa, M. F. (2004) Effects of soybean Kunitz trypsin inhibitor on the cotton boll weevil (Anthonomus grandis). Phytochemistry 65, 81–89.
Garcia-Carreno, F. L., Dimes, L. E. & Haard, N. F. (1993) Substrate-gel electrophoresis for composition and molecular weight of proteinases orproteinaceous protease inhibitors. Analytical Biochemistry 214, 61- 69.
Ghadamyari, M., Hosseininaveh, V. & Sharifi, M. (2010) Partial biochemical characterization of α- and s-glucosidases of lesser mulberry pyralid, Glyphodes pyloalis Walker (Lep.: Pyralidae). Comptes Rendus Biologies 333, 197–204.
Gholamzadeh Chitgar, M., Ghadamyari, M. & Sharifi, M. (2013) Identification and characterization of gut proteases in the fig tree skeletonizer moth, ChoreutisnemoranaHübner (Lepidoptera: Choreutidae). Plant Protection Science 49, 19–26.
Grudkowska, M. & Zagdanska, B. (2004) Multifunctional role of plant cysteine proteinases, Acta biochimica Polonica 51(3), 609-624.
Hernandez, C. A., Pujol, M., Alfonso-Rubi, J., Armas, R., Coll, Y., Perez, M., Gonzalez, A., Ruiz, M., Castanera, P. & Ortego, F. (2003) Proteolytic gut activities in the rice water weevil, Lissorhoptrus brevirostris suffrian (Coleoptera: Curculionidae). Archive of Insect Biochemistry and Physiology 53, 19–29.
Hori, K. (1973) Comparative study of property of salivary amylase among various Heteropterous insects. Comparitive Biochemestry and Physiology Part B 42, 501-508.
Josephrajkumar, A., Chakrabarty, R. & Thomas, G. (2006) Midgut proteases of the cardamom shoot and capsule borer Conogethes punctiferalis (Lepidoptera: Pyralidae) and their interaction with aprotinin. Bulletin of Entomological Research 96, 91–98.
Leo, F. D., Volpicella, M., Licciulli, F., Liuni, S., Gallerani, R. & Ceci, L. R. (2002) PLANT-PIs: a database for plant protease inhibitors and their genes. Nucleic Acids Research 30, 347-348.
Michaud, D., Bernier-Vadnais, N., Overney, S. & Yelle, S. (1995) Constitutive expression of digestive cysteine protease forms during development of the Colorado potato beetle, Leptinotarsa decemlineata say (Coleptera: Chrysomelidae). Insect Biochemistry and Molecular Biology 25, 1041–1048
Montesdeoca, M., Lobo, M. G., Casaas, N., Carnero, A., Castaera P. & Ortego, F. (2005) Partial characterization of the proteolytic enzymes in the gut of the banana weevil, Cosmopolites sordidus, and effects of soybean Kunitz trypsin inhibitor on larval performance. Entomologia Experimentalis et Applicata 116, 227-236.
Oppert, B., Morgan, T. D., Hartzer, K., Lenarcic, B., Galesa, K., Brzin, J., Turk, V., Yoza, K., Ohtsubo, K. & Kramer K. J. (2005) Effects of proteinase inhibitors on digestive proteinases and growth of the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 134, 481-490.
Patankar, A. G., Giri, A. P., Harsulkar, A. M., Sainani, M. N., Deshpande, V. V., Ranjekar, P. K. & Gupta, V. S. (2001) Complexity in specificities and expression of Helicoverpa armigera gut proteinases explains polyphagous nature of the insect pest. Insect Biochemistry and Molecular Biology 31, 453-464.
Priya, S., Kaur, N. & Gupta, A. K. (2010) Purification, characterization and inhibition studies of a-amylase of Rhyzopertha dominica. Pesticide Biochemistry and Physiology 98, 231-237.
Riseh, N. S., Ghadamyari, M. & Motamediniya, B. (2012) Biochemical characterization of á and â- glucosidases and á- and â-galactosidases from red palm weevil, Rhynchophorus ferrugineus Olivieri (Col.: Curculionide). Plant Protection Science 48, 85-93.
Ryan, C. A. (1999) Protease inhibitors in plants: genes for improving defenses against insects and pathogens. Annual Review of Phytopathology 28, 425-449.
Saberi Riseh, N., Ghadammyari, M., Hosseininaveh, V., Motamedinia, B. & Aghaali, N. (2014) Effect of Inhibitors from Plant Seeds on Digestive Proteolytic Activities in Larvae of Date Palm Fruit Stalk Borer, Oryctes elegans Prell (Coleoptera: Scarabaeidae). Journal of Agricultural Science and Technology, 16: 981- 992.
Safaei Khorram, M., Farshbaf Pour Adab, R., Yazdaniyan, M. & Jafarnia, S. (2010) Digestive α-amylase from Leptinotarsa decemlineta (Say) (Coleoptera: Chrysomelidae): response to pH, temperature and some mineral compounds. Advances in Environmental Biology 4(1), 101-107.
Sarboland, S., Mehrkhou, F. & Imani, M. (2017). Gut Proteolytic Profile of Larval Callosobruchus maculatus (Coleoptera: Chrysomelidae) in Response to Feeding on Different Fabaceous Host Plants. Journal of Agriculture and Science Technology 19, 121-132.
SAS (2002) PROC User’s Manual. Version 9.0. 5th Ed. SAS Institute, Inc., Cary.
Seyyedi Sahebari, F., Talebi Chaichi, P. & Maliki Mialni, H. (2000) Biological study of cereal leaf beetle Oulema melanopus on wheat, pp. 14 in: Proceedings of the 14th Iranian Plant Protection Congress. Isfahan University of Technology, Isfahan, Iran [in Persian]
Seyyedi Sahebari, F. (2007) Investigation on the life cycle of cereal leaf beetle, Oulema melanopus (L.) on wheat under field and laboratory conditions. Pajouhesh and Sazandegi 76, 142-147. [In Persian].
Sharifi, M., Gadamyari. M., Mahadavi, M. & Fetemeh, S. (2011) Biochemical characterization of digestive carbohydrases from Xanthogaleruca luteola and inhibition of its α-amylase by inhibitors extracted from the common bean. Archives of Biological Science Belgrade 63 (3), 705-716.
Sharma, H. C. & Ortiz, R. (2000) Transgenics, pest management, and the environment. Current Science 79, 421–437.
Silva, C. P. & Terra, W. R. (1997) α- Galactosidase activity in ingested seeds and in the midgut of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Archives of Insect Biochemistry and Physiology 34, 443–460.
Sivakumar, S., Mohan, M., Franco, O. L. & Thayumanavan, B. (2006) Inhibition of insect pest α-amylases by little and winger millet inhibitors. Pesticide Biochemistry and Physiology 85, 155-160.
Tabatabaei P. R., Hosseininave V., Goldansaz S. H. & Talebi K. (2011) Biochemical characterization of digestive proteases and carbohydrases of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae). Journal of Asia-Pacific Entomology 14, 187–194.
Tatli, A., Bandani, A. & Naghdi, M. (2010) Study of the digestive protease in the elm leaf beetle Xanthogaleruca luteola (Col.: Chrysomylidae), 300 pp In: Proceedings of the 19th Iranian Plant Protection Congress, Tehran University, Karaj, Iran.
Terra, W. R., Ferreira, C., Jordao, B. P. & Dillon, R. J. (1996) Digestive enzymes, In: M. J. Lehane, Billingsley, P. F. (Eds), Biology of the Insect Midgut, pp. 153–193.Chapman and Hall, London.
Valencia, A., Bustillo, A. E., Ossa, G. E. & Chrispeels, M. J. (2000) α-amylase of the coffee berry borer (Hypothenemus hampei) and their inhibition by two plant amylase inhibitors. Insect Biochemistry and Molecular Biology 30, 207-213.
Vatanparast, M. & Hosseininaveh, V. (2010) Digestive amylase and pectinase activity in the larvae of alfalfa weevil, Hypera postica (Coleoptera: Curculionidae). Journal of the Entomological Research Society 40, 328-335.
Wilhite, S. E., Elden, T. C., Brzin, J. & Smigocki, A. C. (2000) Inhibition of cysteine and aspartyl proteinases in the alfalfa weevil midgut with biochemical and plant-derived proteinase inhibitors. Insect Biochemistry and Molecular Biology 30, 1181–1188.
Wiseeing, A., Engkagula, A., Wongpiyasatida, A. & Chuwongkomon, K. (2008) Purification and characterization of Callosobruchus maculatus α-amylase. Kasetsart Journal: Natural Scienc 42, 240-244.
Yapi, D. Y., Niamke, S. L. & Kouame, L. P. (2007) Biochemical characterization of a strictly specific beta-galactosidase from the digestive juice of the palm weevil Rhynchophorus palmarum larvae. Entomological Science 10, 343-352.
Zhu-Salzman, K., Koiwa, H., Salzman, R. A., Shade R. E. & Ahn, J. E. (2003) Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Molecular Biology 12, 135.145.