Residual toxicity of some insecticides on Tuta absoluta (Lepidoptera: Gelechiidae) larvae under laboratory conditions

Document Type : Paper, English

Authors

Department of Plant Protection, University of Tabriz, Tabriz, Iran

Abstract

Tomato leaf miner (TLM), Tuta absoluta (Meyrick), is a destructive insect pest in greenhouses and fields on tomato plants. In this study, the efficacy of seven insecticides: spinosad (Laser®), chlorantraniliprole (Coragen®), indoxacarb (Steward®), abamectin (Vertimec®), metaflumizone (Alverde®), azadirachtin (NeemAzal®), and Bacillus thuringiensis was evaluated against T. absoluta during 30 days from spraying. Tomato plants were sprayed by half and a quarter of the recommended field concentrations of the insecticides. Thirty 2nd instar larvae were placed on the treated plants, 2, 4, 7, 10, 13, 17, 22, 26, and 30 days after treatment, and mortality was recorded 48 hours later. The results showed that spinosad and chlorantraniliprole in the half of the field recommended concentration caused maximum efficacy on T. absoluta larvae, 100 and 80 % mortality at the end of 30 days, respectively. On the other hand, indoxacarb caused 57 % mortality on the 22nd day after exposure to the quarter of the field recommended concentration. In the quarter field-recommended concentration, abamectin and metaflumizone also had moderate mortality (52 and 54 % on the 10th day). The application of these three compounds can be considered suitable for preventing an increasing pest population from reaching the economic injury level. Bacillus thuringiensis var. kurstaki and azadirachtin insecticides had slight mortality and short persistence on this pest. Experts and farmers can select the appropriate compounds to control this pest based on the pest population status according to the obtained results.

Keywords


Abbott, W. S. (1925) A method for computing the effectiveness of an insecticide. Journal of Economic Entomology 18, 265-267.
Aboutalebi, A., Khankahdani, H. H. & Zakeri, E. (2012) Study on yield and quality of 16 tomato cultivars in south of Iran. International Research Journal of Applied and Basic Sciences 3, 838-841.
Agaisse, H. & Lereclus, D. (1995) How does Bacillus thuringiensis produce so much insecticidal crystal protein? Journal of Bacteriology 177, 6021-6027.
AliRezaei, A. & Talaei-Hassanloui, R. (2016) The use of Bacillus thuringiensis-based products in biocontrol of tomato leaf miner, Tuta absoluta (Lepidoptera, Gelechiidae). International Journal of Agriculture Innovations and Research 4, 814-817.
Anonymous, (2011) New pest response guidelines: tomato leafminer (Tuta absoluta). Washington DC United States Department of Agriculture. 180 pp.
Baniameri, V. & Cheraghian, A. (2012) The first report and control strategies of Tuta absoluta in Iran. EPPO Bulletin 42, 322-324.
Behle, R. W., McGuire, M. R. & Shasha, B. S. (1997) Effects of sunlight and simulated rain on residual activity of Bacillus thuringiensis formulations. Journal of Economic Entomology 90, 1560-1566.
Biondi, A., Desneux, N., Siscaro, G. & Zappalà, L. (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: selectivity and side effects of 14 pesticides on the predator Orius laevigatusChemosphere 877, 803-812.
Chatterjee, N. S., Gupta, S. & Varghese, E. (2013) Degradation of metaflumizone in soil: Impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization. Chemosphere 90, 729-736.
Dağlı, F., İkten, C., Sert, E. & Bölücek, E. (2012) Susceptibility of tomato borer, Tuta absoluta (M eyrick) (L epidoptera: G elechiidae) populations from Turkey to 7 different insecticides in laboratory bioassay. EPPO bulletin 42, 305-311.
Desneux, N., Wajnberg, E., Wyckhuys, K. A. G., Burgio, G., Arpaia, S., Narváez-Vasquez, C. A., González-Cabrera, J., Catalán Ruescas, D., Tabone, E., Frandon, J., Pizzol, J., Poncet, Ch., Cabello, T. & Urbaneja, A. (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83, 197-215.
dos Santos, A. C., Bueno, R. D. F., Vieira, S. S. & Bueno, A. D. F. (2011) Efficacy of insecticides on Tuta absoluta (Meyrick) and other pests in pole tomato. Embrapa Soja-Artigo em periódico indexado (ALICE) 6, 4-10.
González-Cabrera, J., Mollá, O., Montón, H. & Urbaneja, A. (2011) Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56, 71-80.
Greaves, A. J., Tomkins, A. R., Thomson, C. T. & Wilson, D. J. (1994) Modelling insecticide residues on kiwifruit foliage: effect of residue age on insecticide activity and concentration. New Zealand Journal of Crop and Horticultural Science 22, 463-467.
Guedes, R. N. C. & Picanço, M. C. (2012) The tomato borer Tuta absoluta in South America: pest status, management and insecticide resistance. EPPO Bulletin 42, 211-216.
Guedes, R. N. C., Roditakis, E., Campos, M. R., Haddi, K., Bielza, P., Siqueira, H. A. A., Tsagkarakou, A., Vontas, J. & Nauen, R. (2019) Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. Journal of Pest Science 92, 1329–1342.
Gupta, M. & Shanker, A. (2008) Persistence of acetamiprid in tea and its transfer from made tea to infusion. Food Chemistry 111, 805-810.
Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L. M., Gorman, K., Rapisarda, C., Williamson, M. S. & Bass, C. (2012) Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology 42, 506-513.
Kumar, J. S., Jayaraj, J., Shanthi, M., Theradimani, M., Balasubramani, V., Irulandi, S. & Prabhu, S. (2020) Toxicity of insecticides to tomato pinworm, Tuta absoluta (Meyrick) populations from Tamil Nadu. Indian Journal of Agricultural Research 54, 585-591.
Lahm, G. P., Cordova, D. & Barry, J. D. (2009) New and selective ryanodine receptor activators for insect control. Bioorganic and Medicinal Chemistry Letters 19, 4127-4133.
Lasota, J. A. & Dybas, R. A. (1991) Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annual Review of Entomology 36, 91-117.
Leskey, T. C., Short, B. D. & Lee, D. H. (2014) Efficacy of insecticide residues on adult Halyomorpha halys (Stal) (Hemiptera: Pentatomidae) mortality and injury in apple and peach orchards. Pest Management Science 70, 1097-1104.
Liu, T. X., Sparks, Jr. A. N., Chen, W., Liang, G. M. & Brister, C. (2002) Toxicity, persistence, and efficacy of indoxacarb on cabbage looper (Lepidoptera: Noctuidae) on cabbage. Journal of Economic Entomology 95, 360-367.
Miranda, M. M. M., Picanço, M., Zanuncio, J. C. & Guedes, R. N. C. (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Science and Technology 8, 597-606.
Mordue, A. J. & Blackwell, A. (1993) Azadirachtin: an update. Journal of Insect Physiology 39, 903-924.
Noorbakhsh, S. (2018) List of important pests, diseases, and weeds of major agricultural crops, pesticides and recommended methods for their control. Ministry of Agriculture Jihad and Plant Protection Organization. 209 p. (In Persian).
Oxborough, R. M., N’Guessan, R., Kitau, J., Tungu, P. K., Malone, D., Mosha, F. W. & Rowland, M. W. (2015) A new class of insecticide for malaria vector control: evaluation of mosquito nets treated singly with indoxacarb (oxadiazine) or with a pyrethroid mixture against Anopheles gambiae and Culex quinquefasciatusMalaria Journal 14, 353-361.
Pekar, S. & Benes, J. (2008) Aged pesticide residues are detrimental to agrobiont spiders (Araneae). Journal of Applied Entomology 132, 614-622.
Picanço, M. C., Bacci, L., Crespo, A. L. B., Miranda, M. M. M. & Martins, J. C. (2007) Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agricultural and Forest Entomology 9, 327-335.
Roditakis, E., Skarmoutsou, C., Staurakaki, M., del Rosario, M., García-Vidal, L., Bielza, P., Haddi, KH., Rapisarda, C., Bassie, J. L. & Teixeira, L. A. (2013) Determination of baseline susceptibility of European populations of Tuta absoluta (Meyrick) to indoxacarb and chlorantraniliprole using a novel dip bioassay method. Pest Management Science 69, 217-227.
Santos, V. S. V. & Pereira, B. B. (2020) Properties, toxicity and current applications of the biolarvicide spinosad. Journal of Toxicology and Environmental Health, Part B 23, 13-26.
Saryazdi, A. G., Hejazi, J. M. & Saber, M. (2012) Residual toxicity of abamectin, chlorpyrifos, cyromazine, indoxacarb and spinosad on Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) in greenhouse conditions. Pesticides and Phytomedicine 27, 107-116.
SAS, (2008). User's Guide: Statistics, Version 9.2 SAS Institute. In Cary, NC.
Saunders, D. G. & Bret, B. L. (1997) Fate of spinosad in the environment. Down to Earth 52, 14-20.
Shahini, S., Bërxolli, A. & Kokojka, F. (2021) Effectiveness of bio-insecticides and mass trapping based on population fluctuations for controlling Tuta absoluta under greenhouse conditions in Albania. Heliyon 7, e05753.
Shekhi Gorjan, A., Rahmani, M., Emani, S. & Javadzadeh, M. (2018) Toxicity of Some New Generation Insecticides Against Tomato Leafminer Moth, Tuta absoluta (Meyrick) Under Laboratory and Greenhouse Conditions. Journal of Applied Research in Plant Protection 7, 99-108.
Siqueira, H. A. A., Guedes, R. N. C., Fragoso, D. D. B. & Magalhaes, L. C. (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae). International Journal of Pest Management 4, 247-251.
Silva, G. A., Picanço, M. C., Bacci, L., Crespo, A. L. B., Rosado, J. F. & Guedes, R. N. C. (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest management science 67, 913-920.
Soares, M. A., Passos, L. C., Campos, M. R., Collares, L. J., Desneux, N. & Carvalho, G. A. (2019) Side effects of insecticides commonly used against Tuta absoluta on the predator Macrolophus basicornis. Journal of Pest Science 92, 1447-1456.
Sohrabi, N., Modarresi, M., & Hosseni, S. J. (2015) Evaluation of susceptibility of different growth stages of the tomato moth, Tuta absoluta (Meyrick) to different insecticides under laboratory conditions. Plant Protection 38, 1-12. (In Persian).
Sundaram, K. M., & Curry, J. (1994) Initial deposits and persistence of azadirachtin in fir and oak foliage after spray application of ‘Margosan‐O® formulation. Pesticide Science 41, 129-138.
Takagi, K., Hamaguchi, H., Nishimatsu, T. & Konno, T. (2007) Discovery of metaflumizone, a novel semicarbazone insecticide. Veterinary Parasitology 150, 177-181.
Torres, J. B., Faria, C. A., Evangelista, W. S. & Pratissoli, D. (2001) Within-plant distribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. International Journal of Pest Management 47, 173-178.
Van de Veire, M., Klein, M. & Tirry, L. (2002) Residual activity of abamectin and spinosad against the predatory bug Orius laevigatus. Phytoparasitica 30, 525-528.
Wei, K., Xu, W., Liu, Q., Yang, L. & Chen, Z. (2020) Preparation of a Chlorantraniliprole–Thiamethoxam Ultralow-Volume Spray and Application in the Control of Spodoptera frugiperda. ACS omega 5, 19293-19303.
Yalcin, M., Mermer, S., Kozaci, L. D. & Turgut, C. (2015) Insecticide resistance in two populations of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) from Turkey. Türkiye Entomoloji Dergisi 39, 137-145.
Yee, W. L. (2018) Spinosad versus spinetoram effects on kill and oviposition of Rhagoletis indifferens (Diptera: Tephritidae) at differing fly ages and temperatures. Journal of Insect Science 18, 1-10.