Temperature-dependent parasitism model of Trissolcus grandis Thompson (Hymenoptera: Scelionidae)

Document Type : Paper, English

Author

Iranian Research Institute of Plant Protection, Tehran, Iran.

10.61186/jesi.43.2.1

Abstract

Abstract. Trissolcus grandis Thompson (Hymenoptera: Scelionidae), a native Sunn pest egg parasitoid in Iran, has the potential as a biological control agent for sunn pest, Eurygaster integriceps Puton (Het.: Scutelleridae). However, its ecological characteristics have remained unclear. Thus, this study aimed to develop a parasitism model of T. grandis with sunn pest egg as host. In order to obtain the data for the model, the longevity, survivorship and parasitism capacity of the adult female T. grandis were examined at nine constant temperatures (15, 17.5, 20, 25, 27.5, 30, 32.5, 35, and 37.5±0.5 °C), relative humidity 65 ± 5 % RH, and a photoperiod of 16:8 (L:D) h. Longevity (mean±SE) decreased as temperature increased and was the longest at 15°C (73.18±3.86 days) and the shortest at 35°C (18.98±0.48 days). A modified model of Sharp-DeMichele well described adult developmental rate (1/mean longevity) in the range of studied temperatures (r2 = 0.994) and was used to calculate the physiological age. The mean total host eggs parasitized/female (mean±SE) was greatest at 17.5°C (275.84 ± 3.21 host eggs) and lowest at 15°C (25.06 ± 3.221 host eggs). The temperature-dependent total parasitism, the age-specific cumulative parasitism rate, and the age-specific survival rate were best described by an extreme value function (r2 = 0.934), the two-parameter Weibull function (r2 = 0.967), and a sigmoid function (r2 = 0.979), respectively. I anticipate that the fitted models and parameters may be useful in developing a population model for T. grandis and lead to a better understanding of its parasitism strategy.
 

Graphical Abstract

Temperature-dependent parasitism model of  Trissolcus grandis  Thompson (Hymenoptera: Scelionidae)

Keywords

Main Subjects


Alexandrov, N. (1947) Eurygaster integriceps Put. A Varamine et ses parasites. Entomologie et Phytopathologie Appliquees 5, 29-41.
Amir-Maafi, M. & Parker, B. L. (2002) Density dependence of Trissolcus spp. (Hym.: Scelionidae) on eggs of Eurygaster integriceps Puton [Het.: Scutelleridae]. Arab Journal of Plant Protection 20, 62-64.
Amir-Maafi, M. & Parker, B. L. (2003) Efficiency of Trissolcus spp. (Hym.: Scelionidae) as an egg parasitoids of Eurygaster integriceps Puton [Het.: Scutelleridae] in Iran. Arab Journal Plant Protection 21, 69-72.
Amir-Maafi, M. (2000) An investigation on the host-parasitoid system between Trissolcus grandis Thomson (Hym.: Scelionidae) and Sunn pest eggs. Ph. D. Thesis. 220 pp. University of Tehran, Iran.
Amir-Maafi, M. & Parker, B. L. (2011) Biological parameters of the egg parasitoid Trissolcus grandis (Hym.: Scelionidae) on Eurygaster integriceps (Hem.: Scutelleridae). Journal of Entomological Society of Iran 30(2), 67-81.
Amir-Maafi. M., Kharazi-Pakdel, A., Sahragard, A. & Rasolian, G. H. (2002) Study on the biology of Trissolcus grandis Thomson (Hym.: Scelionidae) under laboratory condition. Applied Entomology and Phytopathology 68, 29-41. 
Anonymous (2022) Annual report of Sunn pest control in Iran. 50 pp. Published by Plant Protection Organization. [In Persian].
Baek, S., Hwang, A., Kim, H., Lee, H. & Lee, J. H. (2017) Temperature-dependent development and oviposition models of Halyomorpha halys (Hemiptera: Pentatomidae). Journal of Asia-Pacific Entomology 20(2), 367-375. https://doi.org/10.1016/j.aspen.2017.02.009
Choi, K. S., Samayoa, A. C., Hwang, S. Y., Huang, Y. B. & Ahn, J. J. (2020) Thermal effect on the fecundity and longevity of Bactrocera dorsalis adults and their improved oviposition model. PloSone 15(7), e0235910. https://doi.org/10.1371/journal.pone.0235910
Critchely, B. R. (1998) Literature review of Sunn pest, Eurygaster integriceps Puton. (Hemiptera: Scutelleridae). Crop Protection 4, 271-287. https://doi.org/10.1016/S0261-2194(98)00022-2
Curry, G. L. & Feldman, R. M. (1987) Mathematical Foundations of Population Dynamics. The Texas Engineering Experiment Station Monograph Series, No. 3 Texas A & M University Press.
Davari, A. & Parker, B. L. (2018) A review of research on Sunn Pest {Eurygaster integriceps Puton (Hemiptera: Scutelleridae)} management published 2004–2016. Journal of Asia-Pacific Entomology 21(1), 352-360. https://doi.org/10.1016/j.aspen.2018.01.016
Delucchi, V. L. (1961) Le complexe des Asolcus Nakagawa (Microphanurus Kieffer) (Hymenoptera, Proctotrupoidea) parasites oophages des punaises des cereales au Maroc et au Moyen-Orient. Caheirs de la Recherche Agronomique
Farazmand, A. & Amir-Maafi, M. (2020) Oviposition model of Amblyseius swirskii Athias-Henriot in prey system (Tetranychus urticae Koch). Systematic and Applied Acarology 25(10), 1857-1866. https://doi.org/10.11158/saa.25.10.9
Forouzan, M., Shirazi, J., Safaralizadeh, M. H., Safavi, S. A. & Rezaei, M. (2015) Oviposition model of Trissolcus basalis Wholaston (Hym.: Scelionidae) on sunn pest eggs. Journl of Agriculture Science And Technology 17, 551-560. http://hdl.handle.net/123456789/4204
Geng, S., Hou, H., Wang, G., Jung, C., Yin, J. & Qiao, L. (2021) Temperature-dependent oviposition model of Scopula subpunctaria (Lepidoptera: Geometridae). Journal of Asia-Pacific Entomology 24(3), 948-953. https://doi.org/10.1016/j.aspen.2021.08.004
Gusev, G. V. & N. V. Shmettser. (1977) Effect of ecological factors on the rearing of Telenomines in artificial conditions. Trudy Vsesoyuznogo Nauchno issledovatel’skogo Instituta Zashchity Rastenii 44, 7082.
Kang, S. H., Lee, J. H. & Kim, D. S. (2015) Temperature‐dependent fecundity of overwintered Scirtothrips dorsalis (Thysanoptera: Thripidae) and its oviposition model with field validation. Pest management science 71(10), 1441-1451. https://doi.org/10.1002/ps.3949
Kim, D. S. & Lee, J. H. (2003a) Oviposition model of Carposina sasakii (Lepidoptera: Carposinidae). Ecological modelling 162(1-2), 145-153. https://doi.org/10.1016/S0304-3800(02)00402-7
Kim, D. S. & Lee, J. H. (2003b) Oviposition model of overwintered adult Tetranychus urticae (Acari: Tetranychidae) and mite phenology on the ground cover in apple orchards. Experimental & applied acarology 31, 191-208. https://doi.org/10.1023/B:APPA.0000010385.00864.28
Kim, T., Ahn, J. J. & Lee, J. H. (2013) Age‐and temperature‐dependent oviposition model of Neoseiulus californicus (McGregor) (Acari: Phytoseiidae) with Tetranychus urticae as prey. Journal of Applied Entomology 137(4), 282-288. https://doi.org/10.1111/j.1439-0418.2012.01734.x
Lee, J., Baek, S., Kang, C., Lee, Y. S., Lee, Y. & Lee, J. H. (2018) Temperature-dependent development and oviposition models of Ramulus irregulariterdentatus (Phasmida: Phasmatidae). Journal of Asia-Pacific Entomology 21(3), 903-913. https://doi.org/10.1016/j.aspen.2018.07.003
Marchioro, C. A. & Foerster, L. A. (2012) Modelling reproduction of Plutella xylostella L. (Lepidoptera: Plutellidae): climate change may modify pest incidence levels. Bulletin of entomological research 102(4), 489-496. https://doi.org/10.1017/S0007485312000119
Minab, F., Rakhshani, E., Talamas, E.  J. & Ghafouri Moghaddam, M. A. (2023) Checklist of Platygastridae and Scelionidae (Hymenoptera, Platygastroidea) of Iran. Journal of Insect Biodiversity and Systematics 9 (2), 343-383. http://jibs.modares.ac.ir/article-36-67603-en.html
Noor-ul-Ane, M., Kim, D. S. & Zaluchi, M. P. (2018) Fecundity and egg laying in Helicoverpa armigera (Lepidoptera: Noctuidae): model development and field validation. Journal of economic entomology, 111(5), 2208-2216.  https://doi.org/10.1093/jee/toy271
Noor-ul-Ane, M. & Jung, C. (2022) Temperature-dependent modelling of adult performance of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae). Journal of Apicultural Research 61(2), 284-293. https://doi.org/10.1080/00218839.2021.1888538
Nozad Bonab, Z., Iranipour, S. & Farshbaf Pourabad, R. (2014) Demographic parameters of two populations of Trissolcus grandis (Thomson) (Hymenoptera: Scelionidae) at five constant temperatures. Journal of Agricultural Science and Technology 16(5), 969-979.
Pakyari, H., Amir-Maafi, M. & Moghadamfar, Z. (2016) Oviposition model of Ephestia kuehniella (Lepidoptera: Pyralidae). Journal of Economic entomology 109(5), 2069-2073. https://doi.org/10.1093/jee/tow190
Pakyari, H., Amir-Maafi, M., Kim, D. S. & Enkegaard, A. (2012) Oviposition Model of Scolothrips longicornis Fed on Two-spotted Spider Mite. Academic Journal of Entomology 5, 65-72. DOI: 10.5829/idosi.aje.2012.5.2.63147
Park, Y. G. & Lee, J. H. (2020) Temperature-dependent development and oviposition models and life history characteristics of Amblyseius eharai (Amitai et Swirski) (Acari: Phytoseiidae) preying on Tetranychus urticae (Koch) (Acari: Tetranychidae). Journal of Asia-Pacific Entomology 23(4), 869-878. https://doi.org/10.1016/j.aspen.2020.07.021
Rakhshani, H., Ebadi, R. & Rakhshani, E. (2008) Report of Telenomus chrysopae (Hym.: Scelionidae) from Iran. Journal of Entomological Society of Iran 27(2), 21-22.
Rosca, I., Popov, C., Barbulescu, A., Vonica, I. & Fabritius, K. (1996) The role of natural parasitoids in limiting the level of sunn pest populations. FAO Plant Production and Protection Paper, Rome, Italy, (138), 23-33.
Safavi, M. (1968) Etude biologique et ecologique des hymenopteres parasites des oeufs des punaises des cereales. Entomophaga 13, 381-495.
San Choi, K. & Kim, D. S. (2016) Effect of temperature on the fecundity and longevity of Ascotis selenaria (Lepidoptera: Geometridae): developing an oviposition model. Journal of Economic Entomology 109(3), 1267-1272. https://doi.org/10.1093/jee/tow029
SAS Institute. (2019) SAS system for windows, release 9.4. SAS Institute, Cary, NC.
Schoolfield, R. M., Sharpe, P. J. H. & Mugnuson, C. E. (1981) Nonlinear regression of biological temperature dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology 88, 715–731. https://doi.org/10.1016/0022-5193(81)90246-0
Shahrokhi, Sh. (1997) A study on mass rearing of Trissolcus grandis on Graphosoma lineatum eggs and quality control for biological control of Sunn pest, Eurygaster integriceps Put. (Hem.: Scutelleridae). M. Sc. Thesis. 110 pp. University of Tehran, Iran.
Shapiro, V. A., Gusev, G. V. & Kapustina, O. V. (1975) Comparative evaluation of the biological properties of egg parasites of the family Scelionidae, both introduced and indigenous species. Trudy Vsesoyuznogo Nauchno-issledovatel'skogo Instituta Zashchity Rastenii 44, 57-69.
Shirazi, J. (2006) Investigation on the in vitro rearing of Trissolcus grandis an egg parasitoid of Eurygaster integriceps by use of artificial diet. Pakistan Journal of Biological Science 9, 2040-2047.
Taghadosi, M. (1991) A comparison study on reproductive potentials of Karaj, Ghazvin, Varamin and Shahriar populations of Trissolcus grandis Thom. (Hym.: Scelionidae) on eggs of Sunn pest, Eurygaster integriceps Put. (Hem.: Scutelleridae). M. Sc. Thesis. 138 pp. University of Tehran, Iran.
Wagner, T. L., Wu, H., Sharpe, P. J. H., Schoolfield, R. M. & Coulson, R. N. (1984) Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America 77, 208–225. https://doi.org/10.1093/aesa/77.2.208