Cannibalism, predation rate, and intrigued predation of two predatory mites, Protogamasellopsis rhizoglyphusi (Rhodacaridae) and Gaeolaelaps aculeifer (Laelapidae)

Document Type : Paper, Persian

Authors

Department of Plant Protection, Faculty of Agriculture, Bu–Ali Sina University, Hamedan, Iran

10.61186/jesi.43.3.8

Abstract

The The effects of individual predatory include predatory capacity, cannibalism, starvation, and different interactions of predatory on each other which causes effects on the population of the prey and the population of the predatory. Intraguild predation is a combination of competition and predatory. This study investigates the predatory capacity, intraguild predation, and cannibalism of Gaeolaelaps aculeifer and Protogamasellopsis predatory mites. All the tests were studied at 25 ± 1 ºC, with a relative humidity of 60 ± 10%, and at darkness conditions and in transparent plastic bottles (4 cm diameter and 4 cm height) filled with a mixture of Paris plaster and charcoal (7: 1) and a lid covered by a nylon mesh with 0.05 mm pore size and with 30 repetitions. A sufficient amount of C. lactis or R. echinopus including nymph and egg stages was provided as food. The results showed that in predatory capacity, the highest amount of daily egg feeding is related to Gaeolaelaps aculeifer mite feeding on Carpoglyphus lactis eggs and the lowest feeding amount is related to protonymph of Protogamasellopsis rhizoglyphusi mite feeding on Rhizoglyphus echinopus (onion mite). Also, the highest number of prey nymphs used in adults is related to dry fruit mites with 24 prey nymphs per day, which is used by G. aculeifer, and the lowest number of nymphs used is related to P. rhizoglyphusi, which feeds on 10 nymphs of onion mite. The results of cannibalism showed that the survival rate of egg cohorts for predators in predators of 20 eggs was 19.8 days for P. rhizoglyphusi mites and 24.1 days for predators of 30 eggs for G. aculeifer mites. Mites of the same age never fed each other except from the corpses or during molting, when mite locomotory activity and resistance decreased. The results of intraguild predation showed that the predation is asymmetrical IGP. Predatory mite G. aculeifer feed on all the protonymph and deutonymph of P. rhizoglyphusi mites when there is no food. Only 6.7% of the adult female mites of P. rhizoglyphusi survived. Because they are much smaller. When the immature stage of both types of mites is present along with prey mites, the survival rate of P. rhizoglyphusi reaches more than 60%. In the adults of both predators, this rate reaches 100% survival for both species of adult female mites.

Graphical Abstract

Cannibalism, predation rate, and intrigued predation of two predatory mites, Protogamasellopsis rhizoglyphusi (Rhodacaridae) and Gaeolaelaps aculeifer (Laelapidae)

Keywords

Main Subjects


© 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License.

.

Amin, M. R. & Khanjani, M. (2022) Post embryonic stages of a new species of the genus Protogamasellopsis Evans & Purvis (Rhodacaridae: Acari) from Iran. International Journal of Acarology, 48(1), 67-75.  https://doi.org/10.1080/01647954.2021.2022758 
Amin, M. R., Khanjani, M. & Zahiri, B. (2014a). Life table parameters of Hypoaspis aculeifer (Acari: Laelapidae) in feeding on Rhizoglyphus echinopus (Acari: Acaridae). Agricultural Pest Management, 1 (1): 10–22. (In Persian with English abstract) https://sid.ir/paper/248794/en
Amin, M. R., Khanjani, M. & Zahiri, B. (2014b) Preimaginal development and fecundity of Gaeolaelaps aculeifer (Acari: Laelapidae) feeding on Rhizoglyphus echinopus (Acari: Acaridae) at constant temperatures. Journal of Crop Protection, 3(5), 581-587.  http://jcp.modares.ac.ir/article-3-10599-en.html
Asefpour, B., Khanjani, M. & Madadi, H. (2018) Life Table and Predation Rate of Gaeolaelaps aculeifer Raumilben (Acari: Laelapidae) Feeding on Fungus Gnats, Lycoriella auripila Winnertz (Dip: Sciaridae). Journal of Applied Research in Plant Protection, 7(2), 65-76.  doi: 10.1080/09583157.2018.1434613
Barbosa, M. F. & de Moraes, G. J. (2016) Potential of astigmatid mites (Acari: Astigmatina) as prey for rearing edaphic predatory mites of the families Laelapidae and Rhodacaridae (Acari: Mesostigmata). Experimental and Applied Acarology, 69(3), 289-296.  https://doi.org/10.1007/s10493-016-0043-4 
Baatrup, E., Bayley, M. & Axelsen, J. A. (2006) Predation of the mite Hypoaspis aculeifer on the springtail Folsomia fimetaria and the influence of sex, size, starvation, and poisoning. Entomologia experimentalis et applicata, 118(1), 61-70. https://doi.org/10.1111/j.1570-7458.2006.00357.x 
Castilho, R. C., Moraes, G. J. de, Silva, E. S. & Silva, L. O. (2009) Predation potential and biology of Protogamasellopsis posnaniensis Wisniewski & Hirschmann (Acari: Rhodacaridae). Journal of Biological Control, 48: 164–167. https://doi.org/10.1016/j.biocontrol.2008.10.004 
Conijn, C. G. M., Lesna, I., Altena, K., Lilien- Kipnis, H.,(ed.), Borochov, A,(ed.) & Halevy, A. H. (1997) Biological control of the bulb mite Rhizoglyphus robini by the predatory mite Hypoaspis aculeifer on lilies: implementation in practice”. Acta-Horticulture, 430: 619-624. https://doi.org/10.17660/actahortic.1997.430.98 
Díaz a, Okabe, K., Eckenrode, C. J., Villani, M. G. & Oconnor B. M. (1999) Biology, ecology, and management of the bulb mites of the genus Rhizoglyphus (Acari: Acaridae). Experimental and Applied Acarology, 24: 85–113. https://doi.org/10.1023/A:1006304300657
Holt, R. D. & Polis, G. A. )1997( A theoretical framework for intraguild predation. American Naturalist, 147: 396–423. https://doi.org/10.1086/286018 
Ferreira, J. A., Cunha, D. F., Pallini, A., Sabelis, M. W. & Janssen, A. (2011) Leaf domatia reduce intraguild predation among predatory mites. Ecological Entomology, 36(4), 435-441. https://doi.org/10.1111/j.1365-2311.2011.01286.x
Janssen, A., Pallini, A., Venzon, M. & Sabelis, M. W. (1998) Review behaviour and indirect interactions in food webs of plant-inhabiting arthropods. Experimental and Applied Acarology, 22, 497-521. https://doi.org/10.1007/978-94-017-1343-6_16 
Janssen, A., Montserrat, M., Rislambers, R. H., Deroos, A. M., Pallini, A. & Sabelis, M. W. (2006) Intraguild predation usually does not disrupt biological control. Trophic and guild interactions in biological, 21-44. https://doi.org/10.1007/1-4020-4767-3_2 
Kasuga, S., Kanno, H. & Amano, H. (2006) Development, oviposition, and predation of Hypoaspis aculeifer (Acari: Laelapidae) feeding on Tyrophagus similis (Acari: Acaridae). Acarological Society of Japan,15(2): 139-143.  https://doi.org/10.2300/acari.15.139 
Lesna, I., Sabelis, M. W., Bolland, H. R. & Conijn, C. G. M. (1995) Candidate natural enemies for control of Rhizoglyphus robini Claparede (Acari: Astigmata) in lily bulbs: exploration in the field and pre-selection in the laboratory. Experimental and Applied Acarology, 19(11), 655-669. https://doi.org/10.1007/bf00145254 
Park, J., Mostafiz, M. M., Hwang, H. S., Jung, D. O. & Lee, K. Y. (2021) Comparison of the predation capacities of two soil-dwelling predatory mites, Gaeolaelaps aculeifer and Stratiolaelaps scimitus (Acari: Laelapidae), on three thrips species. Journal of Asia-Pacific Entomology, 24(1), 397-401.  https://doi.org/10.1016/j.aspen.2021.01.009 
Persson, L. & Eklov, P. (1995) Prey refuges affecting interactions between piscivorous perch and juvenile perch and roach. Ecology, 76, 70–81. https://doi.org/10.2307/1940632 
Polis, G. A., Myers, C. A. & Holt, R. D. (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology, Evolution, and Systematics, 20:297-330.   https://doi.org/10.1146/annurev.es.20.110189.001501 
Polis, G. A. & Holt, R. D. (1992) Intraguild predation – the dynamics of complex trophic interactions. Trends in Ecology and Evolution, 7, 151–154. https://doi.org/10.1016/0169-5347(92)90208-s 
Ragusa, S. & Zedan, M. A. (1988) Biology and predation of Hypoaspis aculeifer (Canestrini) (Parasitiformes, Dermanyssidae) on Rhizoglyphus echinopus (Fum. & Rob.) (Acariformes, Acaridae) .Redia, 71: 213-225.
Tavoosi Ajvad, F., Madadi, H., Gharali, B. & Kazzazi, M. (2013) Multiple predation effects of Episyrphus balteatus (Dip., Syrphidae) and Hippodamia variegata (Col., Coccinellidae) on Aphis gossypii (Hem.: Aphididae) population. IAU Entomological Research Journal, 5(1), 51-59. http://jer.iau-arak.ac.ir/article_523030_ec026a79cfe98ebe6124991eb817e0b4.pdf
Xu, X., Borgemeister, C. & Poehling, H. M. (2006) Interactions in the biological control of western flower thrips Frankliniella occidentalis (Pergande) and two spotted spider mite Tetranychus urticae Koch by the predatory bug Orius insidiosus say on beans. Biological Control, 36(1):57-64. https://doi.org/10.1016/j.biocontrol.2005.07.019 
Zhang, Z. Q. (2003) “Mites of Greenhouses”: Identification, Biology and Control. CABI Publishing, Wallingford UK and Cambridge USA, xii, 244 p.  https://doi.org/10.1079/9780851995908.0003