Effects of different concentrations of mineral supplements on certain biological, behavioral and biochemical traits of Apis mellifera L. (Hymenoptera: Apidae)

Document Type : Paper, English

Authors

1 Department of Plant Protection, University Campus 2, University of Guilan, Rasht, Iran

2 Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

10.61186/jesi.45.4.7

Abstract

The nutritional status of honeybee (Apis mellifera L.) colonies plays a crucial role in their development, survival, and productivity. This study aimed to evaluate the effect of different concentrations of chelated mineral supplements including iron, zinc, copper, manganese, selenium, chromium, cobalt, magnesium, calcium, and phosphorus on the biological and biochemical characteristics of honeybee colonies. A total of 35 colonies were fed sugar syrup containing different levels (0, 0.5, 1, 1.5, and 2 g/L) of chelated minerals over 60 days, and then their population growth, pollen collection, overwintering success, honey production, and enzymatic activities were assessed. The results showed that colonies fed with 1.5 g/L of chelated minerals exhibited the highest population increase, brood area, and pollen collection. Overwintering success was also highest in colonies receiving 1.5 g/L of minerals, as indicated by the lowest hive weight loss and highest colony survival rates. Biochemical analyses revealed increased antioxidant enzyme activity and energy reserves in bees fed with 1.5–2 g/L of minerals. However, excessive supplementation (2 g/L) led to a decline in colony performance, where the mean number of combs, the population of pre-adult stages (cm2), and collected pollens (cm2) did not show significant differences from the control. These findings suggest that moderate mineral supplementation (1.5 g/L) enhances honeybee colony performance and productivity.

Graphical Abstract

Effects of different concentrations of mineral supplements on certain biological, behavioral and biochemical traits of Apis mellifera L. (Hymenoptera: Apidae)

Keywords

Main Subjects


Addy, S. K. & Goodman, R. N. (1972) Polyphenol oxidase and peroxidase activity in apple leaves inoculated with a virulent or an avirulent strain of Erwinia amylovora. Indian Phytopathology 25, 575-579.
Adgaba, N., Al-Ghamdi, A., Sharma, D., Tadess, Y., Alghanem, S. M. & Khan, K. A. (2020) Physico-chemical, antioxidant, and anti-microbial properties of some Ethiopian mono-floral honeys. Saudi Journal of Biological Sciences 27, 2366-2372. https://doi.org/10.1016/j.sjbs.2020.05.031
Afraze, Z., Sendi, J. J., Karimi-Malati, A. & Zibaee, A. (2020) Methanolic extract of winter cherry causes morpho-histological and immunological ailments in mulberry pyralid Glyphodes pyloalis. Frontiers in Physiology 11, 908. https://doi.org/10.3389/fphys.2020.00908
Ahmad, S., Campos, M. G., Fratini, F., Altaye, S. Z. & Li, J. (2020) New insights into the biological and pharmaceutical properties of royal jelly. International Journal of Molecular Sciences 21, 382-386. https://doi.org/10.3390/ijms21020382
Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. (2010) Diet effects on honeybee immunocompetence. Biology Letters 6, 562-565. https://doi.org/10.1098/rsbl.2009.0986
Al-Kahtani, S. N., Taha, E. K., Khan, K. A., Ansari, M. J., Farag, S. A. & Shawer, D. M. (2020) Effect of harvest season on the nutritional value of bee pollen protein. Plos one 15, e0241393. https://doi.org/10.1371/journal.pone.0241393
Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering?. Journal of Economic Entomology 97, 741-747. https://doi.org/10.1093/jee/97.3.741
Arrese, E. L. & Soulages, J. L. (2010) Insect fat body: Energy, metabolism, and regulation. Annual Review of Entomology 55, 207-225. https://doi.org/10.1146/annurev-ento-112408-085356
Azizi, R. & Jalali Sendi, J. (2024) Responses of continuous cadmium exposure on some biological and physiological performance of cotton bollworm Helicoverpa armigera. Physiological Entomology 49(2), 118-135. https://doi.org/10.1111/phen.12430
Balinsky, D. & Bernstein, R. E. (1963) The purification and properties of glucose-6-phosphate dehydrogenase from human erythrocytes. Biochimica et Biophysica Acta 67, 313-315. https://doi.org/10.1016/0006-3002(63)91828-6
Behjatian-Esfahani, M., Nehzati-Paghleh, G. A., Moravej, H. & Ghaffarzadeh, M. (2023) Effects of different levels of dietary zinc-threonine and zinc oxide on the zinc bioavailability, biological characteristics, and performance of honey bees (Apis mellifera L.). Biological Trace Element Research 201, 2555-2562. https://doi.org/10.1007/s12011-022-03336-x
Burgett, M. & Burikam, I. (1985) Number of adult honey bees occupying a comb: A standard for estimating colony populations. Journal of Economic Entomology 78, 1154-1156. https://doi.org/10.1093/jee/78.5.1154
Castañeda, L. E., Figueroa, C. C., Fuentes-Contreras, E., Niemeyer, H. M. & Nespolo, R. F. (2009) Energetic costs of detoxification systems in herbivores feeding on chemically defended host plants: A correlational study in the grain aphid, Sitobion avenae. Journal of Experimental Biology 212, 1185-1190. https://doi.org/10.1242/jeb.020990
Chabert, S., Requier, F., Chadoeuf, J., Guilbaud, L., Morison, N., & Vaissiere, B. E. (2021) Rapid measurement of the adult worker population size in honey bees. Ecological Indicators, 122, 107313. https://doi.org/10.1016/j.ecolind.2020.107313
Chakrabarti, P., Lucas, H. M. & Sagili, R. R. (2020) Evaluating effects of a critical micronutrient (24-methylenecholesterol) on honeybee physiology. Annals of the Entomological Society of America 113, 176-182. https://doi.org/10.1093/aesa/saz067
Combs Jr, G. F. & Gray, W. P. (1998) Chemopreventive agents: Selenium. Pharmacology & Therapeutics 79, 179-192. https://doi.org/10.1016/s0163-7258(98)00014-x
Cousins, R. J., Liuzzi, J. P. & Lichten, L. A. (2006) Mammalian zinc transport, trafficking, and signals. Journal of Biological Chemistry 281, 24085-24089. https://doi.org/10.1074/jbc.R600011200
Crabtree, B. & Newsome, E. A. (1972) Comparative aspects of fuel utilization and metabolism by muscle. In P. N. R. Usherwood (Ed.), Insect Muscle (pp. 405-500). Academic Press.
De Grandi-Hoffman, G., Wardell, G., Ahumada-Secura, F., Rinderer, T. E., Dank, R. & Pettis, J. (2008) Comparisons of pollen substitute diets for honey bees: Consumption rates by colonies and effects on brood and adult populations. Journal of Apicultural Research 47, 265-270. https://doi.org/10.1080/00218839.2008.11101473
Deepashree, S., Shivanandappa, T. & Ramesh, S. R. (2022) Genetic repression of the antioxidant enzymes reduces the lifespan in Drosophila melanogaster. Journal of Comparative Physiology B 192, 1-13. https://doi.org/10.1007/s00360-021-01412-7
Delaplane, K. S., Van der Steen, J. & Guzman, N. E. (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. Journal of Apicultural Research 52(1), 1-12. https://doi.org/10.3896/IBRA/1.52.1.03
Döke, M. A., McGrady, C. M., Otieno, M., Grozinger, C. M. & Frazier, M. (2018) Colony size, rather than geographic origin of stocks, predicts overwintering success in honey bees (Hymenoptera: Apidae) in the northeastern United States. Journal of Economic Entomology 112, 525-533. https://doi.org/10.1093/jee/toy377
Eisler, R. (1993) Zinc hazards to fish, wildlife, and invertebrates: A synoptic review. Contaminant Hazard Reviews, Report 26. US Department of the Interior, Fish and Wildlife Service, Laurel, MD, USA.
Elbassiouny, A. M. (2005) Effect of vitamin additive and colony management on honey bee performance. Arab Universities Journal of Agricultural Sciences CABI Abstract.
Erejuwa, O. O., Sulaiman, S. A. & Ab Wahab, M. S. (2012) Honey: A novel antioxidant. Molecules, 17, 4400-4423. https://doi.org/10.3390/molecules17044400
Eyer, M., Neumann, P. & Dietemann, V. (2016) A look into the cell: Honey storage in honey bees, Apis mellifera. Plos One 11, e0161059. https://doi.org/10.1371/journal.pone.0161059
Filipiak, M., Kuszewska, K., Asselman, M., Denisow, B., Stawiarz, E. & Woyciechowski, M. (2017) Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. Plos One 12, e0183236. https://doi.org/10.1371/journal.pone.0183236
Fossati, P. & Prencipe, L. (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clinical Chemistry 28, 2077-2080. https://doi.org/10.1093/clinchem/28.10.2077
Gajger, I., Nejedli, S. & Kozaric, Z. (2013) The effect of Nozevit on leucine aminopeptidase and esterase activity in the midgut of honey bees (Apis mellifera). Veterinary Medicine 58(8). https://doi.org/10.17221/6982-VETMED
Gajger, I., Vlainić, J., Šoštarić, P., Prešern, J., Bubnič, J., & Smodiš Škerl, M. I. (2020) Effects on some therapeutical, biochemical, and immunological parameters of honey bee (Apis mellifera) exposed to probiotic treatments, in field and laboratory conditions. Insects 11, 638. https://doi.org/10.3390/insects11090638
Gauthier, M., Aras, P., Jumarie, C. & Boily, M. (2016) Low dietary levels of Al, Pb, and Cd may affect the non-enzymatic antioxidant capacity in caged honey bees (Apis mellifera). Chemosphere 144, 848-854. https://doi.org/10.1016/j.chemosphere.2015.09.057
Ghasemi, V., Nehzati Paghaleh, G., Torabi, E., Arzanforoosh, Z. S., Bideshki, R., Kalanaky, S., Fakharzadeh, S., Hafizi, M. & Nazaran, M. H. (2025) Effects of advanced chelate-based mineral supplement on adult worker honey bees’ (Apis mellifera L.) survival, nutritional indices, hypopharyngeal glands’ growth, energy reserve contents, and tolerance to dimethoate. Journal of Apicultural Research 64, 1-9. https://doi.org/10.1080/00218839.2024.2446106
Ghramh, H. A., Khan, K. A., Ahmed, Z. & Ansari, M. J. (2020) Quality of Saudi honey harvested from the Asir province by using high-performance liquid chromatography (HPLC). Saudi Journal of Biological Sciences 27, 2097-2105. https://doi.org/10.1016/j.sjbs.2020.04.009
Habing, W. H., Pabst, M. J. & Jakoby, W. B. (1974) Glutathione S-transferases: The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249, 7130-7139. https://doi.org/10.1016/S0021-9258(19)42083-8
Hakami, A. R., Khan, K. A., Ghramh, H. A., Ahmad, Z. & Al-Zayd, A. A. A. (2020) Impact of artificial light intensity on nocturnal insect diversity in urban and rural areas of the Asir province, Saudi Arabia. Pols One 15, e0242315. https://doi.org/10.1371/journal.pone.0242315
Han, Z., Moores, G. D., Denholm, I. & Devonshire, A. L. (1998) Association between biochemical markers and insecticide resistance in the cotton aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology 62, 164-171. https://doi.org/10.1006/pest.1998.2373
Haraguchi, H. (2004) Metallomics as integrated biometal science. Journal of Analytical Atomic Spectrometry 19, 5-14. https://doi.org/10.1039/B308213J
Herbert, E. W. & Shimanuki, H. (1978) Mineral requirement for brood-rearing by honey bees fed a synthetic diet. Journal of Apicultural Research 17, 118-122. https://doi.org/10.1080/00218839.1978.11099916
Hyrsl, P., Buyukguzel, E. & Buyukguzel, K. (2007) The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology 66, 23-31. https://doi.org/10.1002/arch.20194
Jensen, P. D. & Trumble, J. T. (2003) Ecological consequences of bioavailability of metals and metalloids in insects. Recent Research and Development in Entomology 42, 1-17.
Kovalskyi, Y., Kovalska, L. & Golovach, P. (2020) Manganese metabolism in the body of the honey bee (Apis mellifera L.) at different periods of ontogenesis. Agricultural Science 22, 74-78. https://doi.org/10.32718/nvlvet-a9313
Kuterbach, D. A., Walcott, B., Reeder, R. J. & Frankel, R. B. (1986) Iron-containing cells in the honey bee (Apis mellifera). Science 218, 695-697. https://doi.org/10.1126/science.218.4573.695
Lawal, O. & Banjo, A. (2010) Appraising the beekeepers' knowledge and perception of pest’s problem in beekeeping business at different ecological zones in southwestern Nigeria. World Journal of Zoology 5, 137-142.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
Maret, W. (2017) Zinc in cellular regulation: The nature and significance of zinc signals. International Journal of Molecular Sciences 18, 2285. https://doi.org/10.3390/ijms18112285
Mattila, H. R. & Otis, G. W. (2006) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies. Journal of Economic Entomology 99, 604-613. https://doi.org/10.1093/jee/99.3.604
Maurizio, A. (1954) Pollen nutrition and life processes of honey bee. Landwirtschaftliches Jahrbuch der Schweiz 68, 115-186.
McCord, J. M. & Fridovich, I. (1969) Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry 244, 6049-6055. https://doi.org/10.1016/S0021-9258(18)63504-5
Mladenović, M., Radoš, R., Stanisavljević, L. Ž. & Rašić, S. (2011) Morphometric traits of the yellow honeybee (Apis mellifera carnica) from Vojvodina (Northern Serbia). Archives of Biological Sciences 63(1), 251-257. https://doi.org/10.2298/ABS1101251M
Mojarab-Mahboubkar, M. & Sendi, J. J. (2025) Evaluating the potential of Artemisia annua essential oil for controlling Hyphantria cunea (Lepidoptera: Erebidae): effects on larval development, immune function, and enzymatic activities. Journal of Economic Entomology 118, 1680-1693. https://doi.org/10.1093/jee/toaf120
Nation, J. L. & Robinson, F. A. (1971) Concentration of some major and trace elements in honey bees, royal jelly, and pollens determined by atomic absorption spectrophotometry. Journal of Apicultural Research 10, 35-43. https://doi.org/10.1080/00218839.1971.11099668
Nehzati, G. A. (2009) Digestibility of protein supplements in honeybees. Ph.D. Thesis, College of Agriculture & Natural Resources, University of Tehran, Karaj. (In Farsi).
Nemati, A., Sendi, J. J. & Fathipour, Y. (2025) Combined effects of gibberellin and vermiwash on the life history and antioxidant system of Phthorimaea absoluta (Meyrick) in tomato plants. Scientific Reports 15, 4435. https://doi.org/10.1038/s41598-025-88820-9
Nikolenko, A. G., Saltykova, E. S. & Gaifullina, L. R. (2011) Molecular mechanisms of antioxidant protective processes in honeybee Apis mellifera. In Oxidative Stress in Vertebrates and Invertebrates: Molecular Aspects of Cell Signaling (pp. 279-293). Wiley-Blackwell.
Nikolić, T. V., Kojić, D., Orčić, S., Vukašinović, E. L., Blagojević, D. P. & Purać, J. (2019) Laboratory bioassays on the response of honey bee (Apis mellifera L.) glutathione S-transferase and acetylcholinesterase to the oral exposure to copper, cadmium, and lead. Environmental Science and Pollution Research 26, 6890-6897. https://doi.org/10.1007/s11356-018-3950-6
Oakeshott, J., Claudianos, C., Campbell, P. M., Newcomb, R. D. & Russell, R. (2010) Biochemical genetics and genomics of insect esterases. In Comprehensive Molecular Insect Science (Vol. 5). Elsevier.
Olejnicek, J. (2004) Insect diets: Science and technology. European Journal of Entomology 101, 512-518. https://doi.org/10.14411/eje.2004.072
Otis, G. W. (2004) The Honey Industry: Entering the 21st Century. American Bee Journal, 144, 836-837.
Pearson, W. D. & Braiden, V. (1990) Seasonal pollen collection by honey bees from grass/shrub highlands in Canterbury, New Zealand. Journal of Apicultural Research 29, 206-213. https://doi.org/10.1080/00218839.1990.11101221
Peters, L., Zhu-Salzman, K. & Pankiw, T. (2010) Effect of primer pheromones and pollen diet on the food-producing glands of worker honey bees (Apis mellifera L.). Journal of Insect Physiology 56, 132-137. https://doi.org/10.1016/j.jinsphys.2009.09.014
Puppel, K., Kapusta, A. & Kuczynska, B. (2014) The etiology of oxidative stress in the various species of animals, a review. Journal of the Science of Food and Agriculture 95, 2179-2184. https://doi.org/10.1002/jsfa.7015
Rand, E. E. D., Smit, S., Beukes, M., Apostolides, Z., Pirk, C. W. & Nicolson, S. W. (2015) Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports 5, 11779. https://doi.org/10.1038/srep11779
Sayed, S., Elsherif, M. E., Mahmoud Basuony, A. & Ghazala, N. (2022) Impacts of natural and supplementary foods on some biochemical activities in the bodies of honeybee workers. Arab Universities Journal of Agricultural Sciences 30, 147-155. https://doi.org/10.21608/ajs.2022.108947.1440
Sharma, V. P. & Kumar, N. R. (2010) Changes in honeybee behavior and biology under the influence of cellphone radiations. Current Science 98, 1376-1378.
Siegert, K. J. (1987) Carbohydrate metabolism in Manduca sexta during late larval development. Journal of Insect Physiology 33, 421-427. https://doi.org/10.1002/arch.940040208
Somerville, D. & Nicol, H. I. (2002) Mineral content of honey bee-collected pollen from southern New South Wales. Australian Journal of Experimental Agriculture 42, 1131-1136. https://doi.org/10.1071/EA01086
Somerville, D. (2005) Fat bees’ skinny bees: A manual on honey bee nutrition for beekeepers. Rural Industries Research and Development Corporation, Australian Government, Goulburn, Australia. https://www.agrifutures.com.au/wp-content/uploads/publications/05-054.pdf.
Spallholz, J. E. (1997) Free radical generation by selenium compounds and their prooxidant toxicity. Biomedical and Environmental Sciences 10, 260-270.
Standifer, L. N. (1978) Supplemental feeding of honey bee colonies. USDA Bulletin No. 413, 8.
Toth, A. L. & Robinson, G. E. (2005) Worker nutrition and division of labour in honeybees. Animal Behaviour 69, 427-435. https://doi.org/10.1016/j.anbehav.2004.03.017
Wang, T. H., Jian, C. H., Hsieh, Y. K., Wang, F. N. & Wang, C. F. (2013) Spatial distributions of inorganic elements in honeybees (Apis mellifera L.) and possible relationships to dietary habits and surrounding environmental pollutants. Journal of Agricultural and Food Chemistry 61, 5009-5015. https://doi.org/10.1021/jf400695w
Wang, Y., Oberley, L. W. & Murhammer, D. W. (2001) Evidence of oxidative stress following the viral infection of two lepidopteran insect cell lines. Free Radical Biology and Medicine 31, 1448-1455. https://doi.org/10.1016/S0891-5849(01)00728-6
Weirich, G. F., Collins, A. M. & Williams, V. P. (2002) Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie 33, 3-14. https://doi.org/10.1051/apido:2001001
Wrigglesworth, V. B. (2015) The physiology of insect metamorphosis. Cambridge University Press.
Yan, H., Jia, H., Gao, H., Guo, X. & Xu, B. (2013) Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana. Cell Stress & Chaperones 18, 415-426. https://doi.org/10.1007/s12192-012-0394-7
Yu, X., Sun, R., Yan, H., Guo, X. & Xu, B. (2012) Characterization of a sigma class glutathione S-transferase gene in the larvae of the honeybee (Apis cerana cerana) on exposure to mercury. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 161, 356-364. https://doi.org/10.1016/j.cbpb.2011.12.009
Yu, X. I., Lu, W. J., Sun, R. J., Guo, X. Q. & Xu, B. H. (2012) Identification and characterization of a novel calcyclin binding protein (CacyBP) gene from Apis cerana. Molecular Biology Reports 39, 8053-8063. https://doi.org/10.1007/s11033-012-1652-6
Zhang, G. & Xu, B. (2015) Effects of dietary calcium levels on development, haemolymph, and antioxidant status of honey bee (Apis mellifera) larvae reared in vitro. Journal of Apicultural Research 54, 48-54. https://doi.org/10.1080/00218839.2015.1035074
Zhang, G., Zhang, W., Cui, X. & Xu, B. (2015) Zinc nutrition increases the antioxidant defenses of honey bees. Entomologia Experimentalis et Applicata 156, 201-210. https://doi.org/10.1111/eea.12342
CAPTCHA Image