تخمین آستانه پایین دمای رشدونمو و نیاز گرمایی کفشدوزک، Cryptolaemus montrouzieri )Mulsant (Coleoptera; Coccinelidae با بکارگیری مدل‌های خطی روز-درجه و ایکموتو و تاکای

نوع مقاله : مقاله کامل، فارسی

نویسندگان

موسسه تحقیقات گیاه پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

چکیده

کفشدوزک شکارگر کریپتولموس، Cryptolaemus montrouzieri Mulsantمهم­ترین دشمن طبیعی شپشک­های آرد آلود می­باشد. شناخت سازگاری­های بوم شناختی عوامل مورد استفاده در برنامه­ های مهار زیستی  آفات، موجب افزایش کارایی آنها در مهار آفات هدف خواهد شد. در این پژوهش، تاثیر دما به عنوان مهم ترین عامل محیطی موثر بر رشدونمو کفشدوزک یاد شده، مورد مطالعه قرار گرفت. طول­ دوره­ ی رشدونمو دوره جنینی (تخم)، سنین مختلف لاروی، شفیرگی و کل دوره­ ی نابالغ کفشدوزک کریپتولموس در دامنه­ دمایی 35-15 درجه سلسیوس، رطوبت نسبی 60-50 درصد و دوره نوری 16 ساعت روشنایی و 8 ساعت تاریکی ثبت شد. بر اساس تجزیه واریانس داده­ ها، دما طول دوره­ رشدونمو مراحل رشدی کفشدوزک کریپتولموس را در سطح احتمال یک درصد تحت تاثیر قرار داد و افزایش دما کاهش طول دوره رشد و نمو  را بدنبال داشت. مدل های خطی روز-درجه و ایکموتو-تاکای به منظور توصیف رشدونمو تابع دمای کفشدوزک کریپتولموس مورد استفاده قرار گرفت. هر چند هر دو مدل برازش مناسبی روی داده­ ها داشتند، ولی با توجه به معیارهای آماری، مقادیر برآورد شده توسط مدل ایکموتو-تاکای به عنوان شاخص­‌های دمایی کفشدوزک کریپتولموس در نظر گرفته شد. بر اساس نتایج به دست آمده، نیاز گرمایی مراحل رشدی جنینی، لارو سنین اول، دوم، سوم، چهارم لاروی، کل دوره لاروی، شفیرگی و کل دوره نابالغ کفشدوزک کریپتولموس به ترتیب 88/80، 38/45، 67/43، 04/53، 27/113، 89/256، 29/143 و 59/483 روز-درجه بود. علاوه بر این مقادیر دمای آستانه پایین دمای رشدونمو برای مراحل یاد شده با به کارگیری مدل ایکموتو-تاکای به ترتیب 79/9، 74/10، 28/10، 67/9، 06/10، 07/10، 18/9 و 64/9 درجه سلسیوس برآورد شد. نتایج به دست آمده از این پژوهش، علاوه بر مشخص کردن جنبه­ هایی از ویژگی­ های دمایی کفشدوزک کریپتولموس، اطلاعات ما را در راستای توسعه­ برنامه مهار زیستی شپشک­‌های آردآلود افزایش می­دهد.   

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of the lower temperature threshold and thermal requirement of Cryptolaemus montrouzieri Mulsant (Coleoptera; Coccinelidae) using Degree-Day and Ikemoto-Takai linear models

نویسندگان [English]

  • H. Ranjbar Aghdam
  • A. Mortazavi Malekshah
Iranian Research Institute of Plant Protection. Agricultural, Research, Education and Extension Organization (ARREO), Tehran, Iran
چکیده [English]

The mealybug destroyer, Cryptoleamus montrouzieri Mulsant is the most important natural enemy of the mealybugs. Increasing knowledge regarding ecological compatibilities of the natural enemies lead to increase their efficacy for controlling the pests. In this study, the effect of temperature as the most effective environmental factor on development of the mealybug destroyerwas studied. Developmental time of incubation period, all larval instars, pupal period, and overall immature stages of the mealybug destroyer were recorded in temperatures ranging 15-35°C, 50-60% RH, and a photoperiod of (L:D) 16:8h. According to the ANOVA, temperature affected significantly developmental time of the mealybug destroyer at 1% probability level and increasing temperature lead to decreasing developmental time. Degree-Day and Ikemoto-Takai linear models were used to describe temperature-dependent development of the mealybug destroyer. While, both of the linear models had shown an acceptable fit to data, because of better statistical criteria, estimation of the Ikemoto-Takai linear model was considered for thermal indices. Estimated values for thermal requirement of incubation period, 1st, 2nd, 3rd, and 4th larval instars, total larval period, pupal period and overall immature stages of the C. montrouzieri were 45.38, 43.67, 53.04, 113.27, 256.89, 143.29 and 483.59 degree-days, respectively. Moreover, the values of the lower temperature threshold for the mentioned developmental stages were 9.79, 10.74, 10.28, 9.67, 10.06, 10.07, 9.18 and 9.64°C, respectively, using Ikemoto and Takaei linear model.According to the results, clarifying some aspects of thermal characteristics of the mealybug destroyer, would increase our knowledge to improve biological control program of the mealybugs.

کلیدواژه‌ها [English]

  • Zero temperature
  • Thermal requirement
  • Linear model
  • Cryptolaemus montrouzieri
Al-Khateeb, N. & Raie, A. (2001) A study of some biological parameters of the predator Cryptolaemus montrouzieri Mulsant introduced to Planococcus citri (Risso) in Syria, and estimate of its predation rate in the laboratory. Plant Protection 19 (2), 131-134.
Banerjee, B. (1993) Tea production and processing. 336 pp. Oxford and IBH publishing.
Bodenheimer, F. S. (1951) Citrus entomology, In the Middle East with special refrence to Egypt, Iran, Iraq, Palestine, Syria, Turkey. 663 pp. Springer.
Bohonak, A. J. (2004) Software for Reduced Major Axis Regression. V.1.17. 5 pp. San Diego State University.  
Briere, J. F., Pracros, P., Roux, A. Y. le. & Pierre, J. S. (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28, 22-29.
Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. & Makauer. M. (1974) Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11, 431-438.
Casey, T. M. (1992) Biophysical ecology and heat exchange in isect. American Zoologist 32, 225-237.
Charles, J. G. (1993) A survey of mealybugs and their natural enemies in horticultural crops in North Island, New Zealand, with implications for biological control. BiocontrolScience and Technology 3 (4), 405-418.
Cooper, S. (1985) Cryptolaemus montrouzieri: a predator for mealybug. British Cactus and Succulent Journal 3, 38-39.
Copland, M. J. W., Perera, H. A. S. & Heidari, M. (1993) Influence of host plant on the biocontrol of glasshouse mealybug. Bulletin OILB SROP 16 (8), 44-47.
Coppel, H. C. & Mertins, J. W. (1977) Biological insect pest suppression. 314 pp. Germany, Springer-Verlag.
Cossins, A. R. & Bowler, K. (1987) Temperature biology of animals. Chapman and Hall, London.
DeBach, P. (1973) Biological control of insect pest and weed. 434 pp. Chapman and Hall, New York.
DeClerq, P. & Degheele, D. (1992) Development and survival of Podisus maculiventris (Say) and Podisus sagitta (Fab.) (Het.: Pentatomidae) at various constant temperatures. Canadian Entomologists 124, 125-133.
Emami, M. S., Sahragard, A. & Hajizade, J. (1999) Effect of different temperatures on development of Scymnus syriacus (Col: Coccinellidae). Journal of Applied Entomology and Phytopathology 17, 35-40.
Figueira, L.K., Carvalho, C.F. & Souza, B. (2000)Biology and thermal requirements of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) fed on Alabama argillacea (Hübner)(Lepidoptera: Noctuidae) eggs. Ciência e Agrotecnologia 24 (2), 319-326.
Forouzan, M., Sahragard, A. & Amir-maafi, M. (2008)Comparison of non-linear models for predicting developmental rate of different life stages of Habrobracon hebetor (Hym.: Braconidae). Applied Entomology and Phytopathology 76, 45-58.
Frazer, B. D. & McGregor, R. R. (1992) Temperature-dependent survival and hatching rate of eggs of seven species of Coccinellidae. Canadian Entomologist 124, 305-312.
Friedman, J., Bohonak, A. J. & Levine, A. (2013) When are two pieces better than one: fitting and testing OLS and RMA regressions. Environmetric 24, 306-316.
Gautam, R. D. (1996) Reports on the use of coccinellid predators for the management of hibiscus (pink) mealybug in the Caribbean. Centeno (Trinidad and Tobago): Ministry of Agriculture, Land and Marine Resources Central Experiment Station. vp. (07774/H10.G3).
Ghadimi-Moazeni, M. (2004) Study on biology and probability of mass rearing of Cryptolaemus montrouzieri Mulsant, predatory coccinellid of citrus mealy bug, Msc., dissertation. Islamic Azad University, Tehran Researches and Science Branch, 67 pp. (In Farsi).
Gilbert, N. & Raworth, D. A. (1996) Insects and temperature, a general theory. The Canadian Entomologist 128, 1-13.
Golizadeh, A. (2007)Thermal requirment and population dynamism of Diamond Back Moth, Plutella xyllostella (L.) (Lep: Plutellidae) in Tehran region. PhD Dissertation, Tarbiat Modares University, Tehran, Iran. pp. 222. (In Persian).
Golizadeh, A., Kamali, K., Fathipour, Y. & Abbasipour, H. (2007)Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants. Insect Science 14, 309-316.
Gordon, R. D. (1985) The Coccinellidae (Coleptera) of America, North of Mexico. Journal of New York Entomological Society 93, 1-912.
Harcourt, D. C. & J. M. Yee. (1982) Polynomial algorithm for predicting the duration of insect life stages. Environmental Entomology 11,581-584.
Heidari,M. & Copland,M.J. W. (1993) Honeydew: a food resource or arrestant for the mealybug predator Cryptolaemus montrouzieri. Entomophaga 38 (1). 63- 68.
Honek, A. (1996) Life history and development, pp. 61-93 in Hodek, I. &  Honek, A. (Eds.) Ecology of Coccinellidae. 464 pp. Kluwer, Dordrecht.
Honek, A. & Kocourek, F. (1988) Thermal requirements for development of aphidophagous Coccinellidae (Coleoptera), Chrysopidae, Hemerobiidae (Neuroptera), and Syrphidae (Diptera): some general trends. Oecologia 76, 445-460.
Howell, J. F. & Neven, L. G. (2000) Physiological development time and zero development temperature of the codling moth (Lepidoptera: Tortricidae). Environmental Entomology 29: 766-772.
Huffaker,C. B.  & Gutierrez, A. p. (1999) Ecological Entomology. Jhon Wiley & Sons, Inc., USA.
Huffaker, C. B., Berryman, A. & Turchin, P. (1999) Dynamics and regulation of insect populations. pp. 269-305. in Huffaker, C. B. & Gutierrez, A. P. (Eds.) Ecological Entomology, 2nd ed. Wiley, New York.
Ikemoto, T. & Takai, K. (2000) A new linearzed formula for the law of the total effective temperature and evaluation of line–fitting methods with both variables subject to error. Environmantal Entomology 29 (4), 671-682.
Izhevsky, S.S. & Orlinsky, A.D. (1988) Life history of the imported Scymmus (Nephus) reunioni (Col.: Cocinellidae) predator of mealybugs. Entomophaga 33(1), 101-114.
Jervis, M. A. & Copland, M. J. W. (1996) The life cycle, pp. 63-161. in Jervis, M. & Kidd, N. (Eds.) Insect natural enemies; practical approaches to their study and evaluation. Chapman and Hall, London.
Khodaman, A. (1993) Biological study of mealybug Nipaecoccus viridis and possibility of its biological control, by crypt ladybird and other available coccinellids in Khuzestan province (southwest Iran). Msc., thesis. Shahid Chamran University.
Kontodimas, D. C., P.A. Eliopoulos, G. J. Stathas & Economou, L. P. (2004) Comparative temperature-  dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various non-linear models using specific criteria. Environmental Entomology 33, 1-11.
Lactin, D. J., Holliday, N.J., Johnson, D. L. & Craigen, R. (1995) Improved rate model of temperature-dependent development by arthropods. Environmental Entomology 24, 68-73.
Lamb, R. J. (1992) Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatutre: implications for estimating rate parameters for insects. Environmental Entomology 21, 10-19.
Lee, J.H. & Elliott, N.C. (1998) Comparison of developmental response to temperatutre in Aphelinus asychis(Walker) from two different geographic regions. Southwest Entomology 23. 77-82.
Logan, J. A., Wollkind, D. J., Hoyt, S.C. & Tanigoshi, L.K. (1976) An analytical model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5, 1133-1140.
Meyerdik, D. E., French, G. V., Hart, W. G. & Chandler, L. D. (1979) Citrus mealybug effect of pesticide residue on adults of the natural enemy complex. Journal of Economic Entomology 72, 893-895.
Murray, D. A. (1978) Effect of fruit fly sprays in the abundance of the abundance of the citrus mealybug Planococcus citri (Risso), and its predator, Cryptolaemus montrouzieri Mulsant on Passion fruit in southeastern Quensland. Journal of Agriculture and Animal Science 35 (2), 143-147.
Nemati, Z., Ranjbar Aghdam, H., Askarianzadeh, A. & Abbasipour, H. (2014) Temperature-dependent development and estimation of the main thermal indices for immature stages of the common green lacewing, Chrysoperla carnea, using linear models. Biocontrol in Plant Protection 1 (2), 75-89.
Ranjbar Aghdam, H. (2009)Using temperature dependent phenology in providing forecasting model of codling moth (Lepidoptera: Tortricidae). PhD dissertation, Tarbiat Modares University, Tehran, Iran. pp. 167.
Ranjbar Aghdam, H., Fathipour, Y., Radjabi, Gh. & Rezapanah, M. (2009) Temperature-dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environmental Entomology 38(3), 885-895.
Roy, M., Brodeur, J. & Cloutier, C. (2002) Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acari: Tetranychidae). Environmental Entomology 31(1), 177-187.
Sharpe, P. J. H. & DeMichele, D. W. (1977) Reaction Kinetics of poikilotherm development. Journal of Theoretical Biology 64, 649-670.
Sinclair, B. J., Vernon, P., Jacoklok, C. & Chown, S. L. (2003) Insect at low temperatures: An ecological perspective. Trend in Ecology and Evoluation 18, 250-257.
Smith, R. J. (2009) Use and misuse of the reduced major axis for line-fitting. American Journal of Physical Antropology 140, 476-486.
Stoetzel, M. B. (1989) Common names of insects and related organisms. 195 pp. Entomological Society of America.
Wagner, T. L., Wu, H. I., Sharpe, P. J. H., Schoolfield, R. M. & Coulson, R. N. (1984) Modeling insect development rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America 77, 208-225.
Yang, X., Shen, M., Xiong, J. & Guo, Z. (1996) Approaches to enhance the effectiveness of biocontrol of Panonychus citri (Acari: Tetranychidae) with Stethorus punctillum (Coleoptera: Coccinellidae) in citrus orchards in Guizhou. Systematic and Applied Acarology 1, 21-27.
Zamani, A. A., Talebi, A. A., Fathipour, Y. & Baniameri, V. (2006) Temperature dependent functional response of two aphid parasitoids, Aphidius colemani and Aphidius matricariae (Hymenoptera: Aphidiae), on the cotton aphid. Journal of Pest Science 79, 183-188.