کاربرد تیمار بذر: راهکار مدیریت مینوز گوجه‌فرنگیTuta absoluta (Lepidoptera: Gelechiidae)

نوع مقاله : مقاله کامل، فارسی

نویسندگان

گروه گیاه‌پزشکی دانشکده کشاورزی دانشگاه مراغه، مراغه، ایران

10.52547/jesi.42.2.1

چکیده

با توجه به خسارت بالای شب‌پره مینوز گوجه‌فرنگی در کشت‌های گوجه‌فرنگی، استفاده از سموم شیمیایی علیه این آفت در حال افزایش می‌باشد و یافتن روش‌های قابل‌تلفیق با کنترل شیمیایی، در مدیریت بهینه این آفت مؤثر می‌باشد. یکی از روش‌ها برقراری مقاومت القایی در گیاه گوجه‌فرنگی، استفاده از تیمار بذور قبل از کشت می‌باشد. باتوجه به نقش کلیدی متیل جاسمونات در ایجاد مقاومت القایی در گیاهان، در مطالعه حاضر بذور گوجه‌فرنگی رقم الیت 24 ساعت قبل از کاشت با استفاده از دو غلظت 1/0 و 2/0 میلی مولار متیل جاسمونات خیسانده و سپس کشت انجام شد. سپس در مرحله گلدهی گوجه‌فرنگی، پارامترهای زیستی و جمعتی شب‌پره مینوز گوجه‌فرنگی با استفاده از جدول زیستی جمعیتی دوجنسی سنی- مرحله‌ای بررسی شد. نتایج نشان داد که پرایمینگ بذر روی پارامترهای جمعیتی Od، F، r و λ در مرحله گلدهی تأثیر داشته و مقدار آن‌ها کمتر از شاهد بود و همچنین این تیمارها دارای جمعیت کوچک‌تری بوده و طول دوره لاروی طولانی‌تر از شاهد بود. پیش‌بینی پیشروی جمعیت این آفت تحت تیمار بذر با متیل جاسمونات، طی 120 روز نشان ‌داد هر چهار مرحله زندگی شب‌پره مینوز گوجه‌فرنگی جمعیت کمتری نسبت به شاهد در روز 120 خواهند داشت که نشان‌دهنده القای مقاومت روی گیاه گوجه‌فرنگی علیه شب‌پره مینوز گوجه‌فرنگی و تأثیر منفی این تیمارها روی ویژگی‌های زیستی و جمعیتی این حشره می‌باشد. درنتیجه متیل جاسمونات به‌عنوان محرک دفاع القایی علیه شب‌پره مینوز گوجه‌فرنگی می‌تواند پس از بررسی‌های بیشتر و مطالعه تأثیر آن روی پارامترهای گیاه و عملکرد در برنامه‌های مدیریت تلفیقی این آفت گنجانده شود.

چکیده تصویری

کاربرد تیمار بذر: راهکار مدیریت مینوز گوجه‌فرنگیTuta absoluta  (Lepidoptera: Gelechiidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Applying seed treatment as a solution for Tomato leafminer, Tuta absoluta (Lepidoptera: Gelechiidae) management

نویسندگان [English]

  • Gholamhossein Gharekhani
  • Hamideh Salekebrahimi
Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
چکیده [English]

Considering the high damage caused by the tomato leaf miner moth, Tuta abosulata, in tomato crops, the use of chemical pesticides against this pest is increasing and finding alternative methods that can be combined with chemical control can be effective in the optimal management of this pest. One of these methods is establishing induced resistance in tomato plants by using seed priming before planting. Considering the key role of methyl jasmonate in creating induced resistance in plants, in the present study, tomato seeds (var: Elite) were soaked 24 hours before planting using two concentrations of 0.1 and 0.2 mM methyl jasmonate. Then, in the flowering stage of tomato, the biological and demographic parameters of tomato leaf miner moth were investigated using the age-stage two-sex life table. The results showed that seed priming affected the population parameters including Od, F, r and λ in the flowering stage and their value was lower than the control, also these treatments had a smaller population and the length of their larval period was longer than the control. The prediction of the population progress under seed treatment with methyl jasmonate, during 120 days, showed that all four life stages of the insect will have a smaller population than the control on day 120, which hints the negative effect of the treatments on biological and population characteristics of the herbivore and indicates the induction of resistance on the host plant. As a result, methyl jasmonate can be consider in the integrated management programs of tomato leaf miner moth by plant resistance mechanisms

کلیدواژه‌ها [English]

  • Age-stage two-sex life table
  • Induced resistance
  • Methyl Jasmonate
  • Pest management
  • Seed priming

 © 2022 by Author(s), Published by the Entomological Society of Iran

This Work is licensed under Creative Commons Attribution-Non Commercial 4.0 International Public Licens

Alba, J. M., Montserrat, M., & Fernández-Muñoz, R. (2009) Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Experimental and Applied Acarology 47(1), 35-47. https://doi.org/10.1007/s10493-008-9192-4.
Andreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006) Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science: formerly Pesticide Science 62(2), 162-170. https://doi.org/10.1002/ps.1142.
Ashraf, M., Akram, N. A., Arteca, R. N., & Foolad, M. R. (2010) The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences 29(3), 162-190. https://doi.org/10.1080/07352689.2010.483580.
Avanci, N. C., Luche, D. D., Goldman, G. H., & Goldman, M. H. S. (2010) Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genet Mol Res 9(1), 484-505. https://doi.org/10.4238/vol9-1gmr754.
Blazhevski, S., Kalaitzaki, A. P., & Tsagkarakis, A. E. (2018) Impact of nitrogen and potassium fertilization regimes on the biology of the tomato leaf miner Tuta absoluta. Entomologia Generalis 37(2), 157-174. http://dx.doi.org/10.1127/entomologia/2018/0321.
Bleeker, P. M., Diergaarde, P. J., Ament, K., Guerra, J., Weidner, M., Schutz, S. & Schuurink, R. C. (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiology 151(2), 925-935. https://doi.org/10.1104/pp.109.142661.
Braham, M. & Hajji, L. (2012) Management of Tuta absoluta (Lepidoptera, Gelechiidae) with insecticides on tomatoes. Agricultural and Biological Sciences, Insecticides-Pest Engineering, Tech, Rijeka, Croatia 333-354. http://dx.doi.org/10.5772/27812.
Bruce, T. J. & Pickett, J. A. (2007) Plant defence signalling induced by biotic attacks. Current Opinion in Plant Biology 10(4), 387-392. https://doi.org/10.1016/j.pbi.2007.05.002.
Chen, H., Jones, A. D. & Howe, G. A. (2006) Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. Federation of European Biochemical Societies letters 580(11), 2540-2546. https://doi.org/10.1016/j.febslet.2006.03.070.
Chen, K. & Arora, R. (2013) Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany 94, 33-45. https://doi.org/10.1016/j.envexpbot.2012.03.005.
Chi, H. & Su, H. Y. (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology 35(1), 10-21. https://doi.org/10.1603/0046-225X-35.1.10.
Chi, H. (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17(1), 26-34. https://doi.org/10.1093/ee/17.1.26.
Chi, H. (1990) Timing of control based on the stage structure of pest populations: a simulation approach. Journal of Economic Entomology 83(4), 1143-1150. https://doi.org/10.1093/jee/83.4.1143.
Chi, H. (2022a) TWOSEX-MSChart: a computer program for the age- stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan, Available from http://140.120.197.173/Ecology/prod02.htm. 8/3/2022
Chi, H. (2022b) TIMING-MSChart: a computer program for the population projection based on age-stage, two-sex life table. Taichung, Taiwan: National Chung Hsing University; Availabl from http://140.120.197.173/Ecology/prod02.htm. 10/5/2022
Chi, H. S. I. N. & Liu, H. S. I. (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24(2), 225-240.
Conrath, U. (2009) Priming of induced plant defense responses. Advances in Botanical Research 51, 361-395. https://doi.org/10.1016/S0065-2296(09)51009-9.
Conrath, U., Beckers, G. J., Flors, V., García-Agustín, P., Jakab, G., Mauch, F. & Mauch-Mani, B. (2006) Priming: getting ready for battle. Molecular Plant-Microbe Interactions 19(10), 1062-1071. https://doi.org/10.1094/mpmi-19-1062.
Denancé, N., Sánchez-Vallet, A., Goffner, D. & Molina, A. (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in plant science 4, 155. https://doi.org/10.3389/fpls.2013.00155.
El-Wakeil, N., Gaafar, N., Sallam, A. & Volkmar, C. (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies. Agricultural and biological sciences “insecticides—development of safer and more effective technologies”. Intech, Rijeka, Croatia 1-54. https://doi.org/10.5772/54199.
EPPO, (2005) European and Mediterranean Plant Protection Organization. Tuta absoluta. Data sheets on quarantine pests. European and Mediterranean Plant Protection Organization Bulletin 35 (2005) 434–435.
Firdaus, S., van Heusden, A. W., Hidayati, N., Supena, E. D. J., Visser, R. G. & Vosman, B. (2012) Resistance to Bemisia tabaci in tomato wild relatives. Euphytica 187(1), 31-45. https://doi.org/10.1007/s10681-012-0704-2.
Foolad, M. R. (2007) Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics 2007. https://doi.org/10.1155/2007/64358.
Gharekhani, G. H. & Salek-Ebrahimi, H. (2014a) Evaluating the damage of Tuta absoluta (Meyrick)(Lepidoptera: Gelechiidae) on some cultivars of tomato under greenhouse condition. Archives of Phytopathology and Plant Protection 47(4), 429-436. https://doi.org/10.1080/03235408.2013.811800.
Gharekhani, G. H. & Salek-Ebrahimi, H. (2014b) Life table parameters of Tuta absoluta (Lepidoptera: Gelechiidae) on different varieties of tomato. Journal of Economic Entomology 107(5), 1765-1770. https://doi.org/10.1603/EC14059.
Gilardón, E., Pocovi, M., Hernández, C., Collavino, G. & Olsen, A. (2001) Papel da 2-tridecanona e dos tricomas glandulares tipo VI na resistência do tomateiro a Tuta absoluta. Pesquisa Agropecuária Brasileira 36, 929-933. https://doi.org/10.1590/S0100-204X2001000700001.
Goellner, K., & Conrath, U. (2007) Priming: it’s all the world to induced disease resistance. In Sustainable Disease Management in a European Context (pp. 233-242). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8780-6_3.
He, L. & Gao, Z. (2009) Pretreatment of seed with H2O2 enhances drought tolerance of wheat (Triticum aestivum L.) seedlings. African Journal of Biotechnology 8(22). https://doi.org/10.5897/AJB09.490.
Huang, S. H., Cheng, C. H., Chen, C. N. & Wu, W. J. (2013) An injury equivalency system for establishing a common economic threshold for three species of rice planthoppers (Hemiptera: Delphacidae) in Taiwan. Journal of Economic Entomology 106(2), 837-843. https://doi.org/10.1603/ec12354.
Kant, M. R., Ament, K., Sabelis, M. W., Haring, M. A. & Schuurink, R. C. (2004) Differential timing of spider mite-induced direct and indirect defenses in tomato plants. Plant Physiology 135(1), 483-495. https://doi.org/10.1104%2Fpp.103.038315.
Kessler, A. & Baldwin, I. T. (2002) Plant responses to insect herbivory. Annual Review of Plant Biology 53, 299-328. https://doi.org/10.1146/annurev.arplant.53.100301.135207.
Khajeh-Hosseini, M., Powell, A. A. & Bingham, I. J. (2003) The interaction between salinity stress and seed vigour during germination of soyabean seeds. Seed Science and Technology 31(3), 715–725. http://dx.doi.org/10.15258/sst.2003.31.3.20.
Kogan, M. (1988) Integrated pest management theory and practice. Entomologia experimentalis et applicata 49(1‐2), 59-70. https://doi.org/10.1111/j.1570-7458.1988.tb02477.x.
Kraus, E. C & Stout, M. J. (2019) Seed treatment using methyl jasmonate induces resistance to rice water weevil but reduces plant growth in rice. PLOS ONE 14(9): e0222800. https://doi.org/10.1371/journal.pone.0222800.
Kuc, J. (1984) Translocated signals for plant immunization. Annals of the New York Academy of Sciences 494:221-223. https://doi.org/10.1111/j.1749-6632.1987.tb29529.x.
Maluf, W. R., Barbosa, L. V. & Costa Santa-Cecília, L. V. (1997) 2-Tridecanone-mediated mechanisms of resistance to the South American tomato pinworm Scrobipalpuloides absoluta (Meyrick, 1917)(Lepidoptera-Gelechiidae) in Lycopersicon spp. Euphytica 93(2), 189-194. https://doi.org/10.1023/A:1002963623325.
Mithöfer, A. & Boland, W. (2012) Plant defense against herbivores: chemical aspects. Annual Review of Plant Biology 63, 431-450. https://doi.org/10.1146/annurev-arplant-042110-103854.
Muigai, S. G., Schuster, D. J., Snyder, J. C., Scott, J. W., Bassett, M. J. & McAuslane, H. J. (2002) Mechanisms of resistance in Lycopersicon germplasm to the whitefly Bemisia argentifolii. Phytoparasitica 30(4), 347-360. https://doi.org/10.1007/BF02979682.
Oliveira, C. M. D., Andrade Júnior, V. C. D., Maluf, W. R., Neiva, I. P. & Maciel, G. M. (2012) Resistance of tomato strains to the moth Tuta absoluta imparted by allelochemicals and trichome density. Ciência e Agrotecnologia 36, 45-52. https://doi.org/10.1590/S1413-70542012000100006.
Paudel, S., Rajotte, E. G. & Felton, G. W. (2014) Benefits and costs of tomato seed treatment with plant defense elicitors for insect resistance. Arthropod-Plant Interactions 8(6), 539-545. https://doi.org/10.1007/s11829-014-9335-y.
Pereyra, P. C. & Sánchez, N. E. (2006) Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 35, 671-676. https://doi.org/10.1590/s1519-566x2006000500016.
Pinto-Zevallos, D. M., Martins, C. B., Pellegrino, A. C. & Zarbin, P. H. (2013) Compostos orgânicos voláteis na defesa induzida das plantas contra insetos herbívoros. Química Nova 36, 1395-1405. https://doi.org/10.1590/S0100-40422013000900021.
Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N., & Weis, A. E. (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annual review of Ecology and Systematics 11, 41-65. https://doi.org/10.1146/annurev.es.11.110180.000353.
Schauer, N., Zamir, D. & Fernie, A. R. (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. Journal of Experimental Botany 56 (410), 297-307. https://doi.org/10.1093/jxb/eri057.
Silva, G. A., Picanço, M. C., Bacci, L., Crespo, A. L. B., Rosado, J. F. & Guedes, R. N. C. (2011) Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science 67 (8), 913-920.
Singh, A. K. (1997) Effect of leguminous plants on the growth and development of gram pod borer, Helicoverpa armigera. Indian Journal of Entomology 59, 209-214.
Siqueira, H. Á. A., Guedes, R. N. C. & Picanço, M. C. (2000) Insecticide resistance in populations of Tuta absoluta (Lepidoptera: Gelechiidae). Agricultural and Forest Entomology 2(2), 147-153. https://doi.org/10.1046/j.1461-9563.2000.00062.x.
Stout, M. J., Zehnder, G. W. & Baur, M. E. (2002) Potential for the use of elicitors of plant resistance in arthropod management programs. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America 51 (4), 222-235. https://doi.org/10.1002/arch.10066.
Thaler, J. S. (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399 (6737), 686-688. https://doi.org/10.1038/21420.
Thaler, J. S., Stout, M. J., Karban, R. & Duffey, S. S. (2001) Jasmonate‐mediated induced plant resistance affects a community of herbivores. Ecological Entomology 26 (3), 312-324. https://doi.org/10.1046/j.1365-2311.2001.00324.x.
Thornton, J. M., Collins, A. R. S. & Powell, A. A. (1993) The effect of aerated hydration on DNA synthesis in embryos of Brassica oleracea L. Seed Science Research 3 (3), 195-199. https://doi.org/10.1017/S0960258500001781.
Torres, J. B., Faria, C. A., Evangelista, W. S. & Pratissoli, D. (2001) Within-plant distribution of the leaf miner Tuta absoluta (Meyrick) immatures in processing tomatoes, with notes on plant phenology. International Journal of Pest Management 47 (3), 173–178. https://doi.org/10.1080/02670870010011091
Traw, B. M. & Dawson, T. E. (2002) Differential induction of trichomes by three herbivores of black mustard. Oecologia 131 (4), 526-532. https://doi.org/10.1007/s00442-002-0924-6.
Trusov, Y., Rookes, J. E., Chakravorty, D., Armour, D., Schenk, P. M. & Botella, J. R. (2006) Heterotrimeric G proteins facilitate Arabidopsis resistance to necrotrophic pathogens and are involved in jasmonate signaling. Plant Physiology 140 (1), 210-220. https://doi.org/10.1104/pp.105.069625.
Tsai, J. H. (1998) Development, survivorship, and reproduction of Toxoptera citricida (Kirkaldy)(Homoptera: Aphididae) on eight host plants. Environmental Entomology 27 (5), 1190-1195. https://doi.org/10.1093/ee/27.5.1190.
Tuan, S. J., Lee, C. C. & Chi, H. (2014) Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age‐stage, two‐sex life table. Pest Management Science 70 (5), 805-813. https://doi.org/10.1002/ps.3618.
Van Lenteren, J. V. & Noldus, L. P. J. J. (1990) Whitefly-plant relationships: behavioural and ecological aspects. In Book. Hollis, D. (1991) Whiteflies: their bionomics, pest status and management, p: 47- 49. Andover, UK.
Way, M. J. & Van Emden, H. F. (2000) Integrated pest management in practice—pathways towards successful application. Crop Protection 19 (2), 81-103. https://doi.org/10.1016/S0261-2194(99)00098-8.
Wei, W., Li, Q. T., Chu, Y. N., Reiter, R. J., Yu, X. M., Zhu, D. H. & Chen, S. Y. (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. Journal of Experimental Botany 66(3), 695-707. https://doi.org/10.1093/jxb/eru392.
Weitbrecht, K., Müller, K., & Leubner-Metzger, G. (2011) First off the mark: early seed germination. Journal of Experimental Botany 62 (10), 3289-3309. https://doi.org/10.1093/jxb/err030.
Worrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E. & Roberts, M. R. (2012) Treating seeds with activators of plant defence generates long‐lasting priming of resistance to pests and pathogens. New Phytologist 193 (3), 770-778. https://doi.org/10.1111/j.1469-8137.2011.03987.x.
Zebelo, S., Piorkowski, J., Disi, J., & Fadamiro, H. (2014) Secretions from the ventral eversible gland of Spodoptera exigua caterpillars activate defense-related genes and induce emission of volatile organic compounds in tomato, Solanum lycopersicum. BMC Plant Biology 14 (1), 1-12. https://doi.org/10.1186/1471-2229-14-140.