مدل رشد وابسته به دما در Trissolcus grandis Thomson (Hymenoptera: Scelionidae)

نوع مقاله : مقاله کامل، انگلیسی

نویسنده

بخش تحقیقات سن، موسسه تحقیقات گیاه پزشکی کشور، تهران، ایران

10.61186/jesi.44.3.2

چکیده

زنبور پارازیتویید Trissolcuss grandis Thomson یکی از مهمترین پارازیتوییدهای تخم سن گندم است، که جمعیت سن گندم را می‌تواند در مزارع گندم و جو کنترل کند. با وجود نتایج ارزشمند قبلی، رشد این زنبور پارازیتویید در دامنه وسیعی از دماها مطالعه نشده است. این مطالعه به منظور ارزیابی اثر دما بر رشد T. grandis بر روی تخم‌ سن گندم به عنوان میزبان در دامنه وسیعی از دما (12/5 تا 40 (℃0/5) درجه سلسیوس، رطوبت نسبی 5±65 درصد و طول دوره روشنای 16 و تاریکی 8 ساعت) در شرایط آزمایشگاهی انجام شد. طول دوره رشدی مرحله نابالغ (تخم-بالغ) T. grandis با افزایش دما تا 35 درجه سلسیوس در هر دو جنس کاهش یافت. الگوهای طول دوره رشد مرحله نابالغ ماده و نر وابسته به دما (یعنی ظهور ماده و نر حشرات بالغ T. grandis) با رگرسیون خطی و غیرخطی مدل‌سازی و شبیه‌سازی شدند. آستانه دما برای ماده‌ها و نرها به ترتیب 10/61 و 10/62 درجه سلسیوس بود. ثابت دمای مرحله نابالغ حشرات ماده و نر به ترتیب 179/85 و 161/03 روز-درجه بود. مدل‌های انتقال مرحله‌ای برای حشرات ماده و نر T. grandis با استفاده از دو مؤلفه اصلی، مدل غیرخطی نرخ رشد (مدل تغییر یافته Sharpe & DeMichele) و مدل توزیع (تابع دو پارامتری Weibull) برای شبیه‌سازی نسبت افراد منتقل شده از تخم به حشرات بالغ ساخته شد. این مدل‌ها برای ساخت مدل جمعیتی T. grandis به منظور توصیف الگوی ظهور و پویایی جمعیت در مزارع مختلف گندم و جو و همچنین برای بهینه سازی شرایط محیطی پرورش انبوه، مفید خواهند بود.

چکیده تصویری

مدل رشد وابسته به دما در  Trissolcus grandis  Thomson (Hymenoptera: Scelionidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling temperature-dependent development of Trissolcus grandis Thomson (Hymenoptera: Scelionidae)

نویسنده [English]

  • Masoud Amir Maafi
Iranian Research Institute of Plant Protection, Tehran, Iran.
چکیده [English]

Trissolcuss grandis Thomson, is an important egg parasitoid of Eurygaster integriceps Puton that can control its population in wheat and barley fields. Despite valuable results from previous studies, the thermal development of T. grandis over a wide range of temperatures had not been elucidated completely. This study was conducted to evaluate the thermal effect on the development of T. grandis using Sunn pest eggs as hosts in a wide range of temperatures (12.5 to 40 ±0.5℃, 65 ± 5% RH., and a photoperiod of 16L:8D h) in the laboratory condition. The development times of the immature stage (Egg-Adult) of T. grandis decreased with increasing temperatures up to 35 ºC for both sexes. Patterns of temperature-dependent development times of the immature stage of females and males (i.e. emergence of females and males of T. grandis adults) were modeled and simulated with linear and nonlinear regression analyses. The estimated low-threshold temperatures (Tb) were 10.61 and 10.62 ºC for females and males, respectively. Thermal constants (k) of the immature stage of females and males were 179.85 and 161.03 degree-days (DD), respectively. Stage transition models for females and males adults of T. grandis were constructed using two basic components of nonlinear development rate (modified Sharpe & DeMichele model function) and distribution models (two-parameter Weibull function) to simulate the proportion of individuals shifted from egg to adult. These models will be useful in building a T. grandis population model that will describe its seasonal occurrence pattern and population dynamics under various wheat and barley fields and optimize environmental conditions in mass rearing.

کلیدواژه‌ها [English]

  • Trissolcus grandis
  • egg parasitoid
  • Sunn Pest
  • developmental rate
  • Stage emergence model

© 2024 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Alexandrov, N. (1948a) Eurygaster integriceps Put. a Varamine et ses parasites (1). Entomologie et Phytopathologie Appliquees 6 (7), 28-47.
Alexandrov, N. (1948b) Eurygaster integriceps Put. a Varamine et ses parasites (2). Entomologie et Phytopathologie Appliquees. 8(7), 16-52.
Amir-Maafi, M. (2023) Temperature-dependent parasitism model of Trissolcus grandis Thompson (Hym.: Scelionidae). Journal of Entomological Society of Iran. 10.61186/JESI.43.2.1
Amir-Maafi, M. & Parker, B. L. (2002) Density dependence of Trissolcus spp. (Hymenoptera: Scelionidae) on eggs of Eurygaster integriceps Puton (Hemiptera: Scutelleridae). Arab Journal of Plant Protection 20, 62-64.
Amir-Maafi, M. & Parker, B. L. (2003) Efficiency of Trissolcus spp. (Hymenoptera: Scelionidae) as egg parasitoids of Eurygaster integriceps Puton (Hemiptera: Scutelleridae) in Iran. Arab Journal of Plant Protection 21, 69-72.
Amir-Maafi, M. & Parker, B. L. (2011) Biological parameters of the egg parasitoid Trissolcus grandis (Hym.: Scelionidae) on Eurygaster integriceps (Hem.: Scutelleridae). Journal of Entomological Society of Iran 30(2), 67-81.
Anonymous. (2023) Annual report of Sunn pest control in Iran. 50 pp. Published by Plant Protection Organization. [In Persian].
Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. (1999) A novel rate model of temperature-dependent development for arthropods. Environmental Entomology 28(1), 22-29. https://doi.org/10.1093/ee/28.1.22
Campbell, A., Frazer, B. D., Gilbert, N. G. A. P., Gutierrez, A. P. & Mackauer, M. (1974) Temperature requirements of some aphids and their parasites. Journal of applied ecology 431-438. https://doi.org/10.2307/2402197
Cockeld, S. D., Butkewich, S. L., Samoil, K. S. & Mahr, D. L. (1994) Forecasting flight activity of Sparganothis sulfureana (Lepidoptera: Tortricidae) in cranberries. Journal of Economic Entomology 87, 193–196. https://doi.org/10.1093/jee/87.1.193
Critchley, B. R. (1998). Literature review of Sunn pest Eurygaster integriceps Put. (Hemiptera, Scutelleridae). Crop protection 17(4), 271-287. https://doi.org/10.1016/S0261-2194(98)00022-2
Curry, G. L., Feldman, R. M. & Sharpe, P. J. H. (1978a). Foundations of stochastic development. Journal of Theoretical Biology 74, 397–410. https://doi.org/10.1016/0022-5193(78)90222-9
Curry, G. L., Feldman, R. M. & Smith, K. C. (1978b) A stochastic model of a temperature-dependent population. Journal of Theoretical Biology 13, 197–213. https://doi.org/10.2307/2531289
Curry, G. L. & Feldman, R. M. (1987) Mathematical foundations of population dynamics. Texas A&M University Press, Texas.
Davis, J. A., Radcliffe, E. B. & Ragsdale, D. W. (2006) Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae). Environmental Entomology 35(6), 1461-1468. https://doi.org/10.1093/ee/35.6.1461
Dee, L. E., Okamtoto, D., Gårdmark, A., Montoya, J. M. & Miller, S. J. (2020) Temperature variability alters the stability and thresholds for collapse of interacting species. Philosophical Transactions of the Royal Society 375 (1814), 20190457. https://doi.org/10.1098/rstb.2019.0457
Delucchi, V. L. (1961) Le complexe des Asolcus Nakagawa (Microphanurus Kieffer) (Hymenoptera, Proctotrupoidea) parasites oophages des punaises des cereales au Maroc et au Moyen-Orient. Caheirs de la Recherche Agronomique.
Ehrlén, J. & Morris, W. F. (2015) Predicting changes in the distribution and abundance of species under environmental change. Ecology letters 18(3), 303-314. https://doi.org/10.1111/ele.12410
Hagstrum, D. W. & Milliken, G. A. (1988) Quantitative analysis of temperature, moisture, and diet factors affecting insect development. Annals of the Entomological Society of America 81(4), 539-546. https://doi.org/10.1093/aesa/81.4.539
Hagstrum, D. W. & Milliken, G. A. (1991) Modeling differences in insect developmental times between constant and fluctuating temperatures. Annals of the Entomological Society of America 84(4), 369-379. https://doi.org/10.1093/aesa/84.4.369
Huffaker, C. B., A. A. Berryman, & P. Turchin. (1999) Dynamics and regulation of insect populations, pp. 269–312. In C. B. Huffaker and A. P. Gutierrez (eds.), Ecological entomology, 2nd ed. Academic Press, New York.
Ikemoto, T. (2005) Intrinsic optimum temperature for development of insects and mites. Environmental Entomology 34(6), 1377-1387. https://doi.org/10.1603/0046-225X-34.6.1377
Ikemoto, T. (2008) Tropical malaria does not mean hot environments. Journal of Medical entomology 45(6), 963-969. https://doi.org/10.1093/jmedent/45.6.963
Iranipour, S., Bonab, Z. N. & Michaud, J. P. (2010) Thermal requirements of Trissolcus grandis (Hymenoptera: Scelionidae), an egg parasitoid of sunn pest. European Journal of Entomology, 107(1), 47.
Kasraii, N. (2010) Biological characteristics and thermal requirements of Trissolcus vassilievi (Hym., Scelionidae) an egg parasitoid of the sunn pest, Eurygaster integriceps (Het.: Scutelleridae). M. Sc. Thesis, Kermanshah, Razi University, 86 p.
Kim, D. S., Lee, J. H. & Yiem, M. S. (2001) Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environmental Entomology 30(2), 298-305. https://doi.org/10.1603/0046-225X-30.2.298
Kivan, M. & Kilic, N. (2005) Effects of temperature on reproductive capacity and longevity of Trissolcus simoni, an egg parasitoid of Eurygaster integricepsJournal of Pest Science 78(2), 105-108. https://doi.org/10.1007/s10340-004-0075-0
Kivan, M. & Kiliç, N. (2006a) A comparison of the development times of Trissolcus rufiventris (Mayr) and Trissolcus simoni Mayr (Hym.: Scelionidae) at three constant temperatures. Turkish journal of agriculture and forestry 30(5), 383-386.
Kivan, M. & Kilic, N. (2006b) Age‐specific fecundity and life table of Trissolcus semistriatus, an egg parasitoid of the sunn pest Eurygaster integricepsEntomological Science 9(1), 39-46. https://doi.org/10.1111/j.1479-8298.2006.00152.x
Krogh, A. (1914) On the influence of the temperature on the rate of embryonic development. Zeitschrift für allgemeine Physiologie 16, 163.
Lactin, D. J., Holliday, N. J., Johnson, D. L. & Craigen, R. (1995) Improved rate model of temperature-dependent development by arthropods. Environmental entomology 24(1), 68-75. https://doi.org/10.1093/ee/24.1.68
Li, Z., Zalucki, M. P., Yonow, T., Kriticos, D. J., Bao, H., Chen, H., Hu, Z., Feng, X. & Furlong, M. J. (2016) Population dynamics and management of diamondback moth (Plutella xylostella) in China: the relative contributions of climate, natural enemies and cropping patterns. Bulletin of Entomological Research 106(2), 197-214. https://doi.org/10.1017/S0007485315001017
Logan, J. A., Wollkind, D. J., Hoyt, S. C. & Tanigoshi, L. K. (1976) An analytic model for description of temperature dependent rate phenomena in arthropods. Environmental Entomology 5(6), 1133-1140. https://doi.org/10.1093/ee/5.6.1133
Miller, R. H. & Morse, J. G. (1996) Sunn pests and their control in the Near East/edited by RH Miller and JG Morse. Food and Agriculture Organization of the United Nations.
Nozad Bonab, Z., Iranipour, S. & Farshbaf Pourabad, R. (2014) Demographic parameters of two populations of Trissolcus grandis (Thomson) (Hymenoptera: Scelionidae) at five constant temperatures. Journal of Agricultural Science and Technology 16(5), 969-979.
Powell, J. E., Shepard, M. & Sullivan, M. J. (1981) Use of heating degree day and physiological day equations for predicting development of the parasitoid Trissolcus basalisEnvironmental Entomology 10(6), 1008-1011. https://doi.org/10.1093/ee/10.6.1008
Rebaudo, F. & Rabhi, V. B. (2018) Modeling temperature‐dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomologia Experimentalis et Applicata 166(8), 607-617. https://doi.org/10.1111/eea.12693
Régnière, J. (1984) A method of describing and using variability in development rates for the simulation of insect phenology. The Canadian Entomologist 116(10), 1367-1376. https://doi.org/10.4039/Ent1161367-10
Rueda, L. M., Patel, K. J., Axtell, R. C. & Stinner, R. E. (1990) Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of medical entomology 27(5), 892-898. https://doi.org/10.1093/jmedent/27.5.892
Safavi, M. (1968) Etude biologique et ecologique des hymenopteres parasites des oeufs des punaises des cereales. Entomophaga 13, 381-495.
SAS Institute. (2019) SAS system for window, release 9.4. SAS Institute, Cary, NC.
Schoolfield, R. M., Sharpe, P. J. H. & Magnuson, C. E. (1981) Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of theoretical biology 88(4), 719-731. https://doi.org/10.1016/0022-5193(81)90246-0
Shapiro, V. A., Gusev, G. V. & Kapustina, O. V. (1975) Comparative evaluation of the biological properties of egg parasites of the family Scelionidae, both introduced and indigenous species. Trudy Vsesoyuznogo Nauchno-issledovatel'skogo Instituta Zashchity Rastenii 44, 57-69.
Sharpe, P. J. & DeMichele, D. W. (1977) Reaction kinetics of poikilotherm development. Journal of theoretical biology 64(4), 649-670. https://doi.org/10.1016/0022-5193(77)90265-X
Shi, P. & Ge, F. (2010) A comparison of different thermal performance functions describing temperature-dependent development rates. Journal of Thermal Biology 35(5), 225-231. https://doi.org/10.1016/j.jtherbio.2010.05.005
Shi, P., Ge, F., Sun, Y. & Chen, C. (2011) A simple model for describing the effect of temperature on insect developmental rate Journal of Asia-Pacific Entomology, 14(1), 15-20. https://doi.org/10.1016/j.aspen.2010.11.008
Stinner, R. E., Gutierrez, A. P. & Butler, G. D. (1974) An algorithm for temperature-dependent growth rate simulation12. The Canadian Entomologist 106(5), 519-524. https://doi.org/10.4039/Ent106519-5
Summers, C. G., Coviello, R. L. & Gutierrez, A. P. (1984) Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae). Environmental Entomology 13(1), 236-242. https://doi.org/10.1093/ee/13.1.236
Taghadosi, M. (1991) A comparison study on reproductive potentials of Karaj, Ghazvin, Varamin and Shahriar populations of Trissolcus grandis Thom. (Hym.: Scelionidae) on eggs of Sunn pest, Eurygaster integriceps Put. (Hem.: Scutelleridae) M.Sc , Thesis. 138 pp. University of Tehran, Iran.
Torres, J. B., Musolin, D. L. & Zanuncio, J. C. (2002) Thermal requirements and parasitism capacity of Trissolcus brochymenae (Ashmead) (Hymenoptera: Scelionidae) under constant and fluctuating temperatures, and assessment of development in field conditions. Biocontrol Science and Technology 12(5), 583-593. https://doi.org/10.1080/0958315021000016243
Wagner, T. L., Wu, H. I., Sharpe, P. J., Schoolfield, R. M. & Coulson, R. N. (1984a) Modeling insect development rates: a literature review and application of a biophysical model. Annals of the Entomological Society of America 77(2), 208-220. https://doi.org/10.1093/aesa/77.2.208
Wagner, T. L., Wu, H., Sharpe, P. J. H. & Coulson, R. N. (1984b) Modeling distributions of insect development time: a literature review and application of the Weibull function. Annals of the Entomological Society of America 77, 475–487. https://doi.org/10.1093/aesa/77.5.475
Wagner, T. L., Wu, H., Feldman, R. M., Sharpe, P. J. H. & Coulson, R. N. (1985) Multiple-cohort approach for simulation development of insect population under variable temperatures. Annals of the Entomological Society of America 78, 691–704. https://doi.org/10.1093/aesa/78.6.691
Weibull, W. (1951) A statistical distribution function of wide applicability. Journal of applied mechanics 18,293–196. https://doi.org/10.1115/1.4010337
Walgama, R. S. & Zalucki, M. P. (2006) Evaluation of different models to describe egg and pupal development of Xyleborus fornicatus Eichh. (Coleoptera: Scolytidae), the shot‐hole borer of tea in Sri Lanka. Insect Science 13(2), 109-118. https://doi.org/10.1111/j.1744-7917.2006.00073.x
White, J., Son, Y. & Park, Y. L. (2009) Temperature-dependent emergence of Osmia cornifrons (Hymenoptera: Megachilidae) adults. Journal of Economic Entomology 102(6), 2026-2032. https://doi.org/10.1603/029.102.0602
Yasemi, M., Sarafrazi, A. & Shojaii, M. (2016) Geographical distribution of Trissolcus grandis (Scelionidae), egg parasitoid of sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae) in Iran. Journal of Asia-Pacific Entomology 19(1), 127-132. https://doi.org/10.1016/j.aspen.2015.12.011
Yeargan, K. V. (1983) Effects of temperature on developmental rate of Trissolcus euschisti (Hymenoptera: Scelionidae), a parasite of stink bug eggs. Annals of the Entomological Society of America 76(4), 757-760. https://doi.org/10.1093/aesa/76.4.757