ترکیب شیمیایی و هم‌افزایی سمیت برخی اسانس‌های گیاهی روی کنه تارتن دو لکه‌ای Tetranychus urticae Koch (Acari: Tetranychidae)

نوع مقاله : مقاله کامل، فارسی

نویسندگان

گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه بوعلی‌سینا، همدان، ایران

10.61186/jesi.44.4.7

چکیده

: تمرکز گسترده بر استفاده از آفت­کش­ها در سراسر جهان، مقاومت جمعیت­ها در کوتاه مدت را به دنبال داشته است. نتیجه چنین شرایطی، افزایش تقاضا برای معرفی روش­های جایگزین انتخابی­تر، دوستدار محیط زیست، ایمن برای انسان و کم هزینه­ با قابلیت تاخیر در ایجاد مقاومت در جمعیت­های آفت بوده است. به رغم آنکه در سال­های اخیر فعالیت حشره­کشی اسانس­های گیاهی مورد توجه بوده است، اما بررسی­ها در خصوص هم­افزایی خواص زیستی اسانس­های گیاهی در کاربرد همزمان و ترکیبی محدود بوده است. از این رو، بررسی پیش­رو با هدف 1) شناسایی ترکیبات مؤثر گونه­های گیاهی مورد Myrtus communis L. (Myrtaceae)، رازیانه Foeniculum vulgare Mill. (Apiaceae)، اکالیپتوس Eucalyptus globulus Labill. (Myrtaceae) و بنه Pistacia atlantica Desf. (Anacardiaceae) با استفاده از روش کروماتوگرافی گازی-طیف­سنجی جرمی در دو مرحله رشد رویشی و گل­دهی کامل، 2) ارزیابی پایداری زیستی و 3) سمیت تنفسی اسانس­ گونه­های گیاهی نام برده در کاربرد مستقل و دوتایی علیه مراحل تخم و بالغ کنه Tetranychus urticae Koch (Acari: Tetranychidae) انجام شد. بازده اسانس­گیری در مراحل رشد رویشی و گل­دهی کامل برای اکالیپتوس، مورد، رازیانه و بنه از 69/0 تا 27/1 درصد متغیر بود. در مجموع در اسانس بنه، اکالیپتوس، مورد و رازیانه، به ترتیب 23، 24، 34 و 17 ترکیب مختلف شناسایی شد. در مرحله گل­دهی کامل گیاهان رازیانه، مورد و اکالیپتوس بیشترین فراوانی به ترکیبات منوترپنی حاوی اکسیژن و در اسانس بنه به هیدروکربن­های منوترپنه اختصاص داشت. در بین اسانس­ گونه­های مورد بررسی بیشترین سمیت تنفسی روی مراحل بالغ و تخم به ترتیب به اسانس مورد (95/3 LC50= میکرو لیتر بر لیتر هوا) و رازیانه (91/0 LC50= میکرو لیتر بر لیتر هوا) اختصاص داشت. دامنه غلظت کشنده 50 درصد برای استفاده ترکیبی از اسانس­ها روی مراحل تخم و بالغ به ترتیب از 75/0 تا 23/3 و 78/3 تا 84/6  میکرولیتر بر لیتر هوا متغیر بود. به استناد شاخص فاکتور هم­افزایی و کاهش دز مصرف، کاربرد ترکیبی اسانس اکالیپتوس- بنه در مقایسه با دیگر ترکیب­ها از بیشترین سمیت روی مراحل تخم و بالغ برخوردار بود. تلفات سمیت تنفسی باقی­مانده اسانس­های گیاهی مورد، اکالیپتوس، بنه و رازیانه در روز سوم بررسی­ها به ترتیب 71، 69، 51 و 61 درصد و در کمتر از 9 روز به صفر رسید. چنین رهایش اولیه و سریعی می­تواند کاهش قابل توجه سمیت باقی‌مانده اسانس­های گیاهی را در پی داشته باشد. به نظر می­رسد اسانس­های گیاهی نام برده از پتانسیل مناسبی جهت کاربرد علیه کنه تار عنکبوتی در شرایط گلخانه برخوردار باشند.

چکیده تصویری

ترکیب شیمیایی و هم‌افزایی سمیت برخی اسانس‌های گیاهی روی کنه تارتن دو لکه‌ای Tetranychus urticae Koch (Acari: Tetranychidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Chemical composition and Synergistic toxicity of four essential oils on Tetranychus urticae (Acari: Tetranychidae)

نویسندگان [English]

  • Maryam Malekmohammadi
  • Farhad Sharifi
Department of plant protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Problems associated with the use of pesticides have urged the need for biodegradable, environmentally and ecologically safe pesticides. Owing to the high heterogeneity and complex composition, binary combinations of plant derived-essential oils often exhibit increased insecticidal activity through synergistic interactions. The aims of the present study, therefore were to: 1) determine essential oil yield and chemical composition of Myrtus communis L. (Myrtaceae), Foeniculum vulgare Mill. (Apiaceae), Eucalyptus globulus Labill. (Myrtaceae) and Pistacia atlantica Desf. (Anacardiaceae) essential oils by gas chromatography–mass spectrometry (GC–MS) at two different phenological stages and 2) evaluate durability and 3) fumigant toxicity of above-mentioned essential oils and their binary combinations against two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae) eggs and adults. The essential oils yields (w/w %) varied between 0.69% for M. communis at vegetative stage and 1.27% for F. vulgare at full flowering stage. At the full flowering stage, 23, 24, 34, and 17 components were identified in essential oils of P. atlanticae, E. globulus, M. communis and F. vulgare, respectively. Oxygenated monoterpenes and monoterpene hydrocarbons constituted the majority of chemical classes in essential oils of the studied plants. Among the oils tested, the most toxic essential oils against adults and eggs of T. urticae were M. communis (LC50= 3.95 μL L−1 air) and F. vulgare (LC50= 0.91 μL L−1 air), respectively. The LC50 values for the binary mixtures of the essential oils ranged between 0.75 to 3.23 μL L−1 and between 3.78 to 6.84 μL L−1, for T. urticae eggs and adults, respectively. Based on the synergistic factor and dose reduction index, the most promising binary mixtures to T. urticae eggs and adults was E. globulus EO: P. atlantica EO. The essential oils of M. communis, E. globulus, F. vulgare and P. atlantica caused 71%, 69%, 61% and 51% mortality at 3rd day exposure, respectively. No mortality was recorded on 9th day of exposure for all plant essential oils. Such this fast-initial release could reduce the toxicological effects expected to each essential oils. Overall it seems that essential oils of the above mentioned plants have the potential to be used in management of T. urticae in greenhouse conditions.

کلیدواژه‌ها [English]

  • two-spotted spider mite
  • chemical composition of essential oil
  • binary combinations
  • fumigant toxicity

© 2024 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267. 
Aboelhadid, S. M., Arafa, W. M., Abdel-Baki, A. A. S., Sokmen, A., Al-Quraishy, S., Hassan, A. O. & Kamel, A. A. (2021). Acaricidal activity of Foeniculum vulgare against Rhipicephalus annulatus is mainly dependent on its constituent from transanethone. PLoS ONE 16, 1–15. https://doi.org/10.1371/journal.pone.0260172.          
Ahmad, M., Denholm, I. & Bromilow, R. H. (2006). Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. Pest Management Science, 62, 805–810.   https://pubmed.ncbi.nlm.nih.gov/16649192/      
Ahmadi, Z., Saber., M., Bagheri, M. & Mahdavinia, G. R. (2018). Achillea millefolium essential oil and chitosan nanocapsules with enhanced activity against Tetranychus urticae. Journal of Pest Science, 91, 837-848. https://link.springer.com/article/10.1007/s10340-017-0912-6.                          
Amizadeh, M., Hejazi, M. J. & Saryazdi, G. A. (2013). Fumigant toxicity of some essential oils on Tetranychus urticae (Acari: Tetranychidae). International Journal of Acarology, 39, 285–289. 10.1080/01647954.2013.777782.
Aouadi, G., Haouel, S., Soltani, A., Ben Abada, M., Boushih, E., Elkahoui, S., Taibi, F., Mediouni Ben Jemaa, J. & Bennadja, S. (2020). Screening for insecticidal efficacy of two Algerian essential oils with special concern to their impact on biological parameters of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 127, 471–482 https://link.springer.com/article/10.1007/s41348-020-00340-y.   
Aprotosoaie, A. C., Spac, A., Hancianu, M., Miron, A., Tanasescu, V. F., Dorneanu, V. & Stanescu, U. (2010). The chemical profile of essential oils obtained from fennel fruits (Foeniculum vulgare Mill.). Farmacia, 58, 46–53. https://pubmed.ncbi.nlm.nih.gov/24502057/.     
Arena, J. S., Omarini, A. B., Zunino, M. P., Peschiutta, M. L., Defago, M. T.  & Zygadlo, J. A. (2018). Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Industrial Crops and Products, 122, 190–194. https://doi.org/10.1016/j.indcrop.2018.05.077           
Arena, J. S., Peschiutta, M. L., Calvimonte, H. & Zygadlo, J. A. (2017). Fumigant and repellent activities of different essential oils alone and combined against the maize weevil (Sitophilus zeamais Motschulsky). MOJ Bioorganic and Organic Chemistry, 1, 249–253. 10.15406/mojboc.2017.01.00043.      
Armstrong, G., Bradbury, F. R., Standen, H. (1951). Penetration of the insect cuticle by isomers of benzenehexachloride. Nature, 167, 319–319. https://www.nature.com/articles/167319a0.    
Bagheri, H., Abdul, B., Manap, M. Y. & Solati, Z. (2014). Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydrodistillation. Talanta, 121, 220–228. https://doi.org/10.1016/j.talanta.2014.01.007.    
Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. (2008). Biological effects of essential oils—a review. Food and Chemical Toxicology, 46, 446–475. 10.1016/j.fct.2007.09.106.             
Barua, A., Roy, S., Handique, G., Bora, F. R., Rahman, A., Pujari, D. & Muraleedharan, N. (2015). Clove oil efficacy on the red spider mite, Oligonychus coffeae Nietner (Acari: Tetranychidae) infesting tea plants. Proceedings of the Zoological Society, 70, 92–96. 10.1007/s12595-015-0147-6.         
Bazzali, O., Tomi, F., Casanova, J. & Bighelli, A. (2012). Occurrence of C8–C10 esters in Mediterranean Myrtus communis L. leaf essential oil. Flavour and Fragrance Journal, 27, 335–340. https://doi.org/10.1002/ffj.3102.                     
Beatovic, D., Krstic- Milosevic, D., Trifunovic, S., Siljegovic, J., Glamocliji, J. & Ristic Jelacic, S. (2015). Chemical composition, antioxidant and antimicrobial activities of the essential oils of twelve Ocimum basilicum L. cultivars grown in Serbia. Records of Natural Products, 9, 62-75. 10.1016/j.foodchem.2007.12.010.         
Bekhechi, C., Watheq Malti, C. E., Boussaïd, M., Achouri, I., Belilet, K., Gibernau, M., Casanova, J. & Tomi, F. (2019). Composition and Chemical Variability of Myrtus communis Leaf Oil from Northwestern Algeria. Natural Product Communications, 5, 1659-62. https://doi.org/10.1177/1934578X19850030.             
Benddine, H., Zaid, R., Babaali, D. & Daoudi-Hacini, S. (2023). Biological activity of essential oils of Myrtus communis (Myrtaceae, Family) and Foeniculum vulgare (Apiaceae, Family) on open fields conditions against corn aphids Rhopalosiphum maidis (Fitch, 1856) in western Algeria. Journal of the Saudi Society of Agricultural Sciences, 22, 78-88. https://doi.org/10.1016/j.jssas.2022.07.001.         
Beynaghi, S., Kheradmand, K., Asgari, S. & Garjan, A. S. (2015). Sublethal effects of Cuminum cyminum and Eugenia caryophyllata essential oils on two-spotted spider mite, Tetranychus urticae. Applied Entomology and Phytopathology, 82, 81–90. 10.22092/jaep.2015.100695.    
Borotova, P., Galovicova, L., Valkova, V., Duranova, H., Vukovic, N., Vukic, M., Babošova, M. & Kacaniova, M. (2021). Biological activity of essential oil from Foeniculum vulgare. Acta horticulturae et regiotecturae, 24, 148–152. https://doi.org/10.2478/ahr-2021-0037.   
Boudraa, H., Kadri, N., Mouni, L. & Madani, K. (2021). Microwave-assisted hydrodistillation of essential oil from fennel seeds: Optimization using Plackett–Burman design and response surface methodology. Journal of Applied Research on Medicinal and Aromatic Plants, 23, 100-307. https://doi.org/10.1016/j.jarmap.2021.100307       
Bouyahya, A., El Omari, N., Elmenyiy, N., Guaouguaou, F. E., Balahbib, A., Belmehdi, O. & Bakri, Y. (2021). Moroccan antidiabetic medicinal plants: Ethnobotanical studies, phytochemical bioactive compounds, preclinical investigations, toxicological validations and clinical evidences; challenges, guidance and perspectives for future management of diabetes worldwide. Trends in Food Science and Technology, 115, 147–254. https://doi.org/10.1016/j.tifs.2021.03.032                                        
Bouzabata, A., Cabral, C., Gonçalves, M. J., Cruz, M. T., Bighelli, A., Cavaleiro, C., Casanova, J., Tomi, F. & Salgueiro, L. (2015). Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology 75, 166–172. https://doi.org/10.1016/j.fct.2014.11.009.                                              
Bozhuyuk, A. U., Kordalí, S. & Kesdek, M. (2020). Toxicities of different essential oils to Tetranychus urticae Koch, 1836 (Acari: Tetranychidae) and Acanthoscelides obtectus (Say, 1831) (Coleoptera: Bruchidae) adults. Turkish Journal of Entomology, 44, 39–47. https://doi.org/10.16970/entoted.587710.              
Cagatay, N. S., Menault, P., Riga, M., Vontas, J. & Ay, R. (2018). Identification and characterization of abamectin resistance in Tetranychus urticae Koch populations from greenhouses in Turkey. Crop Protection, 112, 112–117. 10.1016/j.cropro.2018.05.016                     
Calmasur, O., Aslan, I. & Sahin, F. (2006). Insecticidal and acaricidal effect of three Lamiaceae plant essential oils against Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and Products, 23, 140–146. 10.1016/j.indcrop.2005.05.003.                              
Chalchat, J. C., Michet, A. & Pasquier, B. S. (1998). Study of Clones of Salvia officinalis L. Yields and Chemical Composition of Essential Oil. Flavour and Fragrance Journal, 13, 68–70. https://doi.org/10.1002/(SICI)1099-1026(199801/02)13:1<68::AID-FFJ698>3.0.CO;2-8                                 
Chantraine, J. M., Laurent, D., Ballivian, C., Saavedra, G., Ibanez, R. & Vilaseca, L. A. (1998). Insecticidal activity of essential oils on Aedes aegypti larvae. Phototherapy Research, 12, 350–354. https://doi.org/10.1002/(SICI)1099-1573(199808)12:5<350::AID-PTR311>3.0.CO;2-7.                                                 
Choi, W. I., Lee, S. G., Park, H. M. & Ahn, Y. J. (2004). Toxicity of plant essential oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Economic Entomology, 97, 553–558. 10.1093/jee/97.2.553.                        
Chou, T. C. (2010). Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research, 70, 440-446. https://doi.org/10.1158/0008e5472.CANe09e19470008e5472.CANe09e1947.                                           
Conti, B., Canale, A., Bertoli, A., Gozzini, F. & Pistelli, L. (2010). Essential oil composition and larvicidal activity of six Mediterranean aromatic plants against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitology Research, 107, 1455–1461. https://doi.org/10.1007/s00436-010-2018-4.                                                 
Danna, C., Malaspina, P., Cornara, L., Smeriglio, A., Trombetta, D., De Feo, V. & Vanin, S. (2024). Eucalyptus essential oils in pest control: a review of chemical composition and applications against insects and mites. Crop Protection, 176, 106319.  https://doi.org/10.1016/j.cropro.2023.106319.                                       
Diaz-Maroto, M. C., Díaz-Maroto Hidalgo, I. J., Sánchez-Palomo, E. & Pérez-Coello, M. S. (2005). Volatile components and key odorants of fennel (Foeniculum vulgare Mill.) and thyme (Thymus vulgaris L.) oil extracts obtained by simultaneous distillation extraction and supercritical fluid extraction, Journal of Agricultural and Food Chemistry, 53, 5385–5389. https://doi.org/10.1021/jf050340+.                                   
Diaz-Maroto, M. C., Perez-Coello, M. S., Esteban, J. & Sanz, J. (2006). Comparison of the volatile composition of wild fennel samples (Foeniculum vulgare Mill) from central Spain. Journal of Agricultural and Food Chemistry, 54, 6814–6818. https://doi.org/10.1021/jf0609532.
Djenane, D., Yanguela, J., Amrouche, T., Boubrit, S., Boussad, N. & Roncales, P. (2011). Chemical Composition and Antimicrobial Effects of Essential Oils of Eucalyptus globulus, Myrtus communis and Satureja hortensis against Escherichia coli O157: H7 and Staphylococcus aureus in minced beef. Food Science and Technology International, 17, 505–515. https://doi.org/10.1177/1082013211398803.                         
Dobravalskyte, D., Venskutonis, P. R., Zebib, B., Merah, O. & Talou, T. (2013). Essential oil composition of Myrrhis odorata L. Scop. leaves grown in Lithuania and France. Journal of Essential Oil Research. 25, 44–48. https://doi.org/10.1080/10412905.2012.744703.
Duso, C., Malagnini, V., Pozzebon, A., Castagnoli, M., Liguori, M. & Simoni, S. (2008). Comparative toxicity of botanical and reduced-risk insecticides to Mediterranean populations of Tetranychus urticae and Phytoseiulus persimilis (Acari Tetranychidae, Phytoseiidae). Biological Control, 47, 16–21. https://doi.org/10.1016/j.biocontrol.2008.06.011.     
Ebadollahi, A., Sendi, J. J., Aliakbar, A. & Razmjou, J. (2014). Chemical composition and acaricidal effects of essential oils of Foeniculum vulgare Mill. (Apiales: Apiaceae) and Lavandula angustifolia Miller (Lamiales: Lamiaceae) against Tetranychus urticae Koch (Acari: Tetranychidae). Psyche: A Journal of Entomology, 1–6. 10.1155/2014/424078.                
Ebadollahi, A., Ziaee, M. & Palla, F. (2020). Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 25:1556. 10.3390/molecules25071556.                    
Eldoksch, H. A., Ayad, A. & El-Sebae, A. K. H. (2009). Acaricidal activity of plant extracts and their main terpenoids on the two-spotted spider mite Tetranychus urticae (Acari: Tetranychidae). Alexandria Science Exchange Journal, 30, 344–349. 10.21608/asejaiqjsae.2009.3248.          
Enan, E. E. (2005). Molecular and pharmacological analysis of an octopamine receptor from american cockroach and fruit fly in response to plant essential oils. Archives of Insect Biochemistry and Physiology, 59, 161–171. https://doi.org/10.1002/arch.20076.                         
Faraone, N., Hillier, N. K., & Cutler, G. C. (2015). Plant essential oils synergize and antagonize toxicity of different conventional insecticides against Myzus persicae (Hemiptera: Aphididae). PloS one, 10, e0127774. 10.1371/journal.pone.0127774                                          
Feng, R. & Isman, M. B. (1995). Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia, 51, 831–833. https://doi.org/10.1007/BF01922438                              
Feroz, A. (2020). Efficacy and cytotoxic potential of deltamethrin, essential oils of Cymbopogon citratus and Cinnamonum camphora and their synergistic combinations against stored product pest. Trogoderma granarium (Everts). Journal of Stored Products Research, 87, 101614. https://doi.org/10.1016/j.jspr.2020.101614     
Foudil-Cherif, Y., Boutarene, N. & Yassaa, N. (2013). Chemical composition of essential oils of Algerian Myrtus communis and chiral analysis of their leave volatiles. Journal of Essential Oil Research, 25, 402–408. https://doi.org/10.1080/10412905.2013.828323.   
Gama, U. S. N., Neto, A. C. A., Bruno, R. D. L. A., Junior, L. R. P. & Medeiros, J. G. F. (2014). Thermotherapy in treating fennel seeds (Foeniculum vulgare Mill.): effects on health and physiological quality. Revista Ciencia Agronomica, 45, 842–849. https://doi.org/10.1590/S1806-66902014000400023.                       
Gnankine, O. & Bassole, I. (2017). Essential oils as an alternative to pyrethroids’ resistance against Anopheles species complex giles (Diptera: Culicidae). Molecules, 22, 1321. 10.3390/molecules22101321.
Gotoh, T., Bruin, J., Sabelis, M. W. & Menken, S. B. J. (1993). Host race formation in Tetranychus urticae: genetic differentiation, host plant preference, and mate choice in a tomato and a cucumber strain. Entomologia Experimentalis et Applicata, 68, 171–178. DOI 10.1111/j.1570-7458.1993.tb01700.x.                              
Hamada, D., Bekri, R., Medjahid, A., Kamaci, R., Belkhalfa, H., Salhi, N. & Ladjel, S. (2021). Biological control with essential oil of Foeniculum vulgare Mill. European Journal of Science and Technology, 28, 52–55. https://doi.org/10.31590/ejosat.981759.                    
Han, Y., Zhang, Y. C., Ye, W. N., Wang, S. M., Wang, X. & Gao, C. F. (2024). Increasing resistance of Tetranychus urticae to common acaricides in China and risk assessment to spiromesifen. Crop Protection, 176, 106519. https://doi.org/10.1016/j.cropro.2023.106519.  
Hennia, A., Miguel, G. M., Brada, M., Nemmiche, S. & Figueiredo, A. C. (2016). Composition, chemical variability and effect of distillation time on leaf and fruits essential oils of Myrtus communis from north western Algeria, Journal of Essential Oil Research, 28, 146-156, https://doi.org/10.1080/10412905.2015.1090936.                     
Hummelbrunner, L. A. & Isman, M. B. (2001). Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep., Noctuidae). Journal of Agricultural and Food Chemistry, 49, 715–720. https://doi.org/10.1021/jf000749t.           
Isman, M. B. (2020). Botanical insecticides in the twenty-first century-fulfilling their promise? Annual Review of Entomology, 65, 233-249. 10.1146/annurev.ento.51.110104.151146       
Jahani, R., Behzad, S., Saffariha, M., Tabrizi, N. T. & Faizi, M. (2022). Sedative-hypnotic, anxiolytic and possible side effects of Salvia Limbata CA Mey. extracts and the effects of phenological stage and altitude on the rosmarinic acid content. Journal of Ethnopharmacology, 282, 114630. 10.1007/s11101-010-9170-4                      
Jalali Sendi J. & Ebadollahi, A. (2014). Biological activities of essential oils on insects. In Recent Progress in Medicinal Plants (RPMP): Essential Oils-II. 37, 129–150. https://www.academia.edu/34031499/Biological_Activities_of_Essential_Oils_on_Insects               
Khammassi, M., Loupassaki, S., Tazarki, H., Mezni, F., Slama, A., Tlili, N., Zaouali, Y., Mighri, H., Jamoussi, B. & Khaldi, A. (2018). Variation in essential oil composition and biological activities of Foeniculum vulgare Mill. populations growing widely in Tunisia. Journal of Food Biochemistry, 42. https://doi.org/10.1111/jfbc.12532.             
Khan, M. & Musharaf, S. (2014). Foeniculum vulgare Mill. A medicinal herb. Journal of Medicinal Plants Research, 4, 46–54. https://doi.org/10.5376/mpr.2014.04.0006.                        
Kheradmand, K., Beynaghi, S., Asgari, S. & Garjan, A. S. (2015). Toxicity and repellency effects of three plant essential oils against two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Journal of Agricultural Science and Technology, 17, 1223–1232. https://doi.org/10.22073/pja.v9i1.55853                 
Kholiva, S., Punetha, A., Cha uham, A., Venkatesha, K. T., Dipender, K., Upadhyay, R. K. & Padalia, R. C. (2022). Essential oil yield and composition of Ocimum basililicum L. at different phenological stages, plant density and post- harvest drying method. South African Journal of Botany, 151, 919-925. 10.1016/j.sajb.2022.11.019        
Kim, D. H., Kim, S. I., Chang, K. S. & Ahn, Y. J. (2002). Repellent Activity of Constituents Identified in Foeniculum vulgare Fruit against Aedes aegypti (Diptera: Culicidae). Journal of Agricultural and Food Chemistry, 50, 6993–6996. https://doi.org/10.1021/jf020504b.  
Kim, S. I., Roh, J. Y., Kim, D. H., Lee, H. S. & Ahn, Y. J. (2003). Insecticidal activities of aromatic plant extracts and essential oils against Sitophilus oryzae and Callosobruchus chinensis. Journal of Stored Products Research, 39, 293-303. https://doi.org/10.1016/S0022-474X(02)00017.       
Kim, S., Yoon, J. & Tak, J. H. (2021). Synergistic mechanism of insecticidal activity in basil and mandarin essential oils against the tobacco cutworm. Journal of Pest Science, 94, 1119–1131. 10.1007/s10340-021-01345-8. 
Koc, S., Oz, E., Cinbilgel, I., Aydin, L. & Cetin, H. (2013). Acaricidal activity of Origanum bilgeri P.H. Davis (Lamiaceae) essential oil and its major component, carvacrol against adults Rhipicephalus turanicus (Acari: Ixodidae). Veterinary Parasitology, 193, 316–319. DOI 10.1016/j.vetpar.2012.11.010.                        
Lamiri, A., Lhaloui, S., Benjilali, B. & Berrada, M. (2001). Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Research, 71, 9–15. https://doi.org/10.1016/S0378-4290(01)00139-3.                         
Langeveld, W. T., Veldhuizen, E. J. A. & Burt, S. A. (2014). Synergy between essential oil components and antibiotics: a review. Critical Reviews in Microbiology, 40, 76–94. https://doi.org/10.3109/1040841X.2013.763219.                           
Lee, B. H., Annis, P. C., Tumaalii, F. & Choi, W. S. (2004). Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. Journal of Stored Products Research, 40, 553–564. https://doi.org/10.1016/j.jspr.2003.09.001
Lee, S., Peterson, C. J. & Coats, J. R. (2002). Fumigation Toxicity of Monoterpenoids to several stored product pests. Journal of Stored Products Research, 39, 77-85. https://doi.org/10.1016/S0022-474X(02)00020-6                            
Lee, S., Tsao, R., Peterson, C. & Coats, J. R. (1997). Insecticidal activity of monoterpenes to western corn root worm (Coleoptera: Chrysomelidae), two spotted spider mite (Acari: Tetranychidae), and housefly (Diptera: Muscidae). Journal of Economic Entomology 90, 883–892. 0.1093/jee/90.4.883.
Lucia, A., Licastro, S., Zerba, E., Gonzalez, A. P. & Masuh, H. (2009). Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus Essential oils. Bioresource Technology, 100, 6083–87. 10.1016/j.biortech.2009.02.075
Magierowicz, K., Gorska-Drabik, E. & Golan, K. (2019). Effects of plant extracts and essential oils on the behavior of Acrobasis advenella (Zinck.) caterpillars and females. Journal of Plant Diseases and Protection, 127, 63–71. 10.1007/s41348-019-00275-z. 
Mahmoud, N. F., Badawy, M. E. I., Marei, Abd, El. SM. & Abdelgaleil, S. A. M. (2019). Acaricidal and antiacetylcholinesterase activities of essential oils from six plants growing in Egypt. International Journal of Acarology, 45, 245–251.10.1080/01647954.2019.1611919. 
Mills, C., Cleary, B.V., Walsh, J. J. & Gilmer, J. F. (2004). Inhibition of acetylcholinesterase by Tea Tree oil. Journal of Pharmacy and Pharmacology, 56, 375–379. https://doi.org/10.1211/0022357022773.
Mimica-Dukic, N., Bugarin, D., Grbovic, S., Miticculafic, D., Vukovic-Gacic, B., Orcic, D., Jovin, E., & Couladis, M. (2010). Essential oil of Myrtus communis L. as a potential antioxidant and antimutagenic agents. Molecules, 15, 2759–2770. https://doi.org/10.3390/molecules15042759.                         
Miresmailli, S., Bradbury, R., & Isman, M. B. (2006). Comparative toxicity of Rosmarinus officinalis L. essential oil and blends of its major constituents against Tetranychus urticae Koch (Acari: Tetranychidae) on two different host plants. Pest Managements Science, 62, 366–371. https://onlinelibrary.wiley.com/doi/abs/10.1002/ps.1157.                                                                         
Moghaddam, M., Pirbalouti, A. G., Mehdizadeh, L. & Pirmoradi, M. R. (2015). Changes in composition and essential oil yield of Ocimum ciliatum at different phenological stages European Food Research and Technology, 240, 199-204. http://library.vru.ac.ir/dL/search/default.aspx?Term=1169&Field=0&DTC=130.     
Moghrani, H. & Maachi, R. (2008). Valorization of Myrtus communis essential oil obtained by steam driving distillation. Asian Journal of Scientific Research,1, 518–524. https:// doi.org/10.3923/ajsr.2008.518.524.
Mohamadi, Y., Lograda, T., Ramdani, M., Figueredo, G. & Chalard, P. (2021). Chemical composition and antimicrobial activity of Myrtus communis essential oils from Algeria. Biodiversitas, 22,933-946. https://doi.org/10.13057/biodiv/d220249.    
Montoro, P., Tuberoso, C. I. G., Piacente, S., Perrone, A., Feo, V. D., Cabras, P. & Pizza, C. (2006). Stability and antioxidant activity of polyphenols in extracts of Myrtus communis L. berries used for the preparation of myrtle liqueur. Journal of Pharmaceutical and Biomedical Analysis, 41, 1614–1619. https://doi.org/10.1016/j.jpba.2006.02.018.      
Norris, E. J., Johnson, J. B., Gross, A. D., Bartholomay, L. C. & Coats, J. R. (2018). Plant essential oils enhance diverse pyrethroids against multiple strains of mosquitoes and inhibit detoxification enzyme processes. Insects, 9, 132. https://doi.org/10.3390/insects9040132
Ouis, N., Hariri, A. & El Abed, D. (2014). Phytochemical analysis and antimicrobial bioactivity of the Algerian parsley essential oil (Petroselinum crispum). African Journal of Microbiology Research, 8, 1157–1169. https://doi.org/10.5897/AJMR12.1021.     
Ozcan, M. M. & Chalchat, J. C. (2010). Comparison of chemical composition of essential oil obtained from different parts of Foeniculum vulgare ssp. Piperitum used as condiment. Journal of Food Biochemistry, 34, 1268–1274. https://doi.org/10.1111/j.1745-4514.2010.00370.x.
Pavela, R. & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science 21,1000–1007. 10.1016/j.tplants.2016.10.005
Pavela, R. (2008). Insecticidal properties of several essential oils on the house fly (Musca domestica L.). Phytotherapy Research, 22, 274–278. 10.1002/ptr.2300   
Pavela, R. (2015) Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus Say larvae. Parasitology Research, 114, 3835– 3853. https://doi.org/10.1007/s00436-015-4614-9.                     
Plata-Rueda A., Zanuncio J. C., Serrao, J. E. & Martinez, L. C. (2021). Origanum vulgare essential oil against Tenebrio molitor (Coleptera: Tenebrionidae): composition, insecticidal activity, and behavioral response. Plants, 10:2513. https://doi.org/10.3390/plants10112513.       
Pourya, M., Sadeghi, A., Ghobari, H., Taning, C. N. T. & Smagghe, G. (2018). Bioactivity of Pistacia atlantica desf. Subsp. Kurdica (Zohary) Rech. F. and Pistacia khinjuk stocks essential oils against Callosobruchus maculatus (F, 1775) (Coloeptera: Bruchidae) under laboratory conditions. Journal of Stored Products Research, 77, 96–105. https://doi.org/10.1016/j.jspr.2018.03.007.                                  
Rahimmalek, M., Maghsoudi, H., Sabzalian, M. R. & Pirbalouti, G. (2018). Variability of essential oil content and composition of different Iranian fennel (Foeniculum vulgare Mill.) accessions in relation to some morphological and climatic factors. Journal of Agricultural Science and Technology, 16, 1365–1374. https://sid.ir/paper/718047/en.                           
Rajendran, S. & Sriranjini, V. (2008). Plant products as fumigants for stored-product insect control. Journal of Stored Products and Resources, 44, 126–35.                 
Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29, 913–920. https://doi.org/10.1016/j.cropro.2010.05.008
Reddy, S. G. E. & Dolma, S. K. (2018). Acaricidal activities of essential oils against two-spotted spider mite, Tetranychus urticae Koch. Toxin Reviews, 37, 62-66, 10.1080/15569543.2017.1320805.                   
Rincon, R. A., Rodríguez, D. & Coy-Barrera, E. (2019). Botanicals against Tetranychus urticae Koch under laboratory conditions: a survey of alternatives for controlling pest mites. Plants 8, 272. 10.3390/plants8080272.                                 
Robertson, J. L., Russel, R. M., Preisler, H. K. & Savin, N. E. (2007). Bioassays with Arthropods. 2nd ed. CRC Press, Inc, Boca Raton, FL.        
Roh, H. S., Lim, E. G., Kim, J. & Park, C. G. (2011). Acaricidal and oviposition deterring effects of santalol identified in sandalwood oil against two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Journal of Pest Science, 84, 495–501. 10.1007/s10340-011-0377-y.                               
Rozman, V., Kalinovic, I. & Korunic, Z. (2007). Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects. Journal of Stored Products Research, 43, 349–355. https://doi.org/10.1016/j.jspr.2006.09.001.                                
Ruttanaphan, T., Pluempanupat, W., Aungsirisawat, C., Boonyarit, P., Le, G. G., & Bullangpoti, V.  (2019) Effect of plant essential oils and their major constituents on cypermethrin Tolerance associated detoxification enzyme activities in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 112, 2167–2176. https://academic.oup.com/jee/article/112/5/2167/5505288.               
Sadeghi, A., Pourya, M. & Smagghe, G. (2016). Insecticidal activity and composition of essential oils from Pistacia atlantica subsp. kurdica against the model and stored product pest beetle Tribolium castaneum. Phytoparasitica, 44, 601–607. https://doi.org/10.30491/JABR.2020.107583                          
Santamaria, M. E., Arnaiz, A., Rosa-Diaz, I., González-Melendi, P., Romero-Hernandez, G., Ojeda-Martinez, D. A., Garcia, A., Contreras, E., Martinez, M. & Diaz, I. (2020). Plant defenses against Tetranychus urticae: mind the gaps. Plants, 9, 464. 10.3390/plants9040464.                              
Savikin-Fodulovic, K. P., Bulatovic, V. M., Menkovic, N. R. & Grubisic, D. V. (2000). Comparison between the essential oil of Myrtus communis L. obtained from naturally grown and in vitro plants. Journal of Essential Oil Research, 12, 75–78.  https://doi.org/10.1080/10412905.2000.9712047.                          
Sayed-Ahmad, B., Talou, T., Saad, Z., Hijazi, A. & Merah, O. (2017). The Apiaceae: Ethnomedicinal family as source for industrial uses. Industrial Crops and Products, 109, 661–671. https://doi.org/10.1016/j.indcrop.2017.09.027.                       
Sertkaya, E., Kaya, K. & Soylu, S. (2010). Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Industrial Crops and Products, 31, 107–112. 10.1016/j.indcrop.2009.09.009.                              
Shang, X., Wang, Y., Zhou, X, Guo, X., Dong, S., Wang, D., Zhang, J., Pan, H., Zhang, Y. & Miao, X. (2016). Acaricidal activity of oregano oil and its major component, carvacrol, thymol and p-cymene against Psoroptes cuniculi in vitro and in vivo. Veterinary, Parasitology, 226, 93–96. 10.1016/j.vetpar.2016.07.001.                            
Shi, L., Shi, Y., Zhang, Y. & Liao, X. (2019). A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Scientific Reports, 9, 14997. https://www.nature.com/articles/s41598-019-51234-5.      
Sun, Y. P. (1950). Toxicity index-an improved method of comparing the relative 378 toxicity of insecticides. Journal of Economic Entomology, 43, 45-53. https://www.cabidigitallibrary.org/doi/full/10.5555/19501000378.
Susurluk, H. (2023). Potential use of essential oils from Origanum vulgare and Syzygium aromaticum to control Tetranychus urticae Koch (Acari: Tetranychidae) on two host plant species. PeerJ, 11, e14475. http://doi.org/10.7717/peerj.14475
Suwannayod, S., Sukontason, K. L., Pitasawat, B., Junkum, A., Limsopatham, K., Jones, M. K., Somboon, P., Leksomboon, R., Chareonviriyaphap, T., Tawatsin, A., Thavara, U. & Sukontason, K. (2019). Synergistic toxicity of plant essential oils combined with pyrethroid insecticides against blow flies and the house fly. Insects, 10, 1-16. https://doi.org/10.3390%2Finsects10060178.                               
Tabet, V. G., Vieira, M. R., Martins, G. L. M., Milan de Sousa, C. G. N. (2018). Plant extracts with potential to control of two-spotted spider mite. Agricultural Entomology, 85,1–8. 10.1590/1808-1657000762015.                        
Taiwo, O. W., Ofuya, T. I., Adebayo, R. A. & Idoko, J. E. (2023). Antagonistic, additive and synergistic interactions in the fumigant toxicity of binary mixes of powders of cloves and citrus fruit peels to adults of Callosobruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae). GSC Biological and Pharmaceutical Sciences, 24, 285–289. https://doi.org/10.30574/gscbps.2023.24.2.0296.
Tak, J. H. & Isman, M. B. (2015). Enhanced cuticular penetration as the mechanism for synergy of insecticidal constituents of rosemary essential oil in Trichoplusia ni. Scientific Reports, 5, 12690. https://pubmed.ncbi.nlm.nih.gov/26223769/.                       
Tak, J. H. & Isman, M. B. (2016). Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism. Pesticide Biochemistry and Physiology, 133, 20–25. https://doi.org/10.1016/j.pestbp.2016.03.009                          
Tak, J. H. & Isman, M. B. (2017). Penetration-enhancement underlies synergy of plant essential oil terpenoids as insecticides in the cabbage looper Trichoplusia ni, Scientific Reports, 7, 42432. https://www.nature.com/articles/srep42432                
Telci, I., Demirtas, I. & Sahin, A. (2009). Variation in plant properties and essential oil composition of sweet fennel (Foeniculum vulgare Mill.) fruit during stages of maturity. Industrial Crops and Products, 30, 126–130. https://doi.org/10.1016/j.indcrop.2009.02.010         
Toncer, O., Karaman, S., Diraz, E. & Tansi, S. (2017). Essential oil composition of Ocimum basilicum L. at different phenological stages in semi-arid environmental conditions. Fresenius Environmental Bulletin, 26, 5441-5446. https://www.researchgate.net/publication/326850091
Tong, F. & Bloomquist, J. R. (2013). Plant essential oils affect the toxicities of carbaryl and permethrin against Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 50, 826-832. 10.1603/me13002.                    
Tong, F. & Coats, J. R. (2010). Effects of monoterpenoid insecticides on [3H]-TBOB binding in house fly GABA receptor and Cl− uptake in American cockroach ventral nerve cord. Pesticide Biochemistry and Physiology, 98, 317–324. https://doi.org/10.1016/j.pestbp.2010.07.003.
Topuz, E. & Erler, F. (2007). Bioefficacy of some essential oils against the carmine spider mite, Tetranychus cinnabarinus. Fresenius Environmental Bulletin, 16, 1498–1502. https://www.google.com/url?sa=t&rct=j&.
Toudert-Taleb, K., Hedjal-Chebheb, M., Hami, H., Debras, J. F. & Kellouche, A. (2014). Composition of Essential Oils Extracted from Six Aromatic Plants of Kabylian Origin (Algeria) and Evaluation of Their Bioactivity on Callosobruchus maculatus (Fabricius, 1775) (Coleoptera: Bruchidae). African Entomology, 22, 417–427. https://doi.org/10.4001/003.022.0220
Veal, L. (1996). The potential effectiveness of essential oils as a treatment for headlice, Pediculus humanus capitis. Complementary Therapies in Nursing and Midwifery, 2, 97–101. 10.1016/s1353-6117(96)80083-7 .         
Viuda-Martos, M., Mohamady, M. A., Fernández-Lopez, J., Abd ElRazik, K. A., Omer, E. A., Pérez-Alvarez, J. A. & Sendra, E. (2011). In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food. Control. 22, 1715–1722. https://doi.org/10.1016/j.foodcont.2011.04.003.                         
Wagner, H. & Ulrich-Merzenich, G. (2009). Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine 16, 97–110. https://doi.org/10.1016/j.phymed.2008.12.018.              
Walle, M., Walle, B., Zerihun, L. & Makonnen, E. (2014). Sedative-hypnotic like effect of the essential oil from the leaves of Myrtus communis   on mice. Asian Journal of Biological and Life sciences, 2, 70–77. https://doi.org/10.11648/j.ajbls.20140204.12.                 
Wang, D. C., Qiu, D. R., Shi, L. N, Pan, H. Y., Li, Y. W., Sun, J. Z., Xue, Y. J., Wei, D. S. & Li, X. (2015). Identification of insecticidal constituents of the essential oils of Dahlia pinnata Cav. against Sitophilus zeamais and Sitophilus oryzae. Natural Product Research, 29, 1748-51. https://pubmed.ncbi.nlm.nih.gov/25563135/                              
Yaghoobi-Ershadi, M. R., Moosa-Kazemi, S. H., Zahraei-Ramazani, A. R., Jalai-Zand, A. R., Akhavan, A. A., Arandian, M. H. & Hosseini, M. (2006). Evaluation of deltamethrin-impregnated bed nets and curtains for control of zoonotic cutaneous leish-maniasis in. Bulletin   de la Société de Pathologie Exotique, 99, 43–48. https://doi.org/10.3185/pathexo2818.           
Zerkani, H., Amalich, S., Tagnaout, I., Bouharroud, R. & Zair, T. (2022). Chemical composition, pharmaceutical potential and toxicity of the essential oils extracted from the leaves, fruits and barks of Pistacia atlantica. Biocatalysis and Agricultural Biotechnology, 43, 102431. https://doi.org/10.1016/j.bcab.2022.102431.