مقاومت القایی در فلفل رنگی به‌وسیله قارچ آنتاگونیست Trichoderma harzianum T22 و جاسمونیک اسید در برابر تریپس غربی گلخانه Frankliniella occidentalis (Thysanoptera: Thripidae)

نوع مقاله : مقاله کامل، فارسی

نویسندگان

1 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 بخش تحقیقات کنترل بیولوژیک، موسسه تحقیقات گیاهپزشکی کشور، تهران، ایران

10.22117/jesi.2025.366227.1629

چکیده

تریپس غربی گل، Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) یکی از آفات مهم محصولات گلخانه‌ای می‌باشد که دامنه میزبانی گسترده‌ای دارد. در این پژوهش، اثر تیمار گیاهان فلفل رنگی رقم لورکا، با هورمون اسید جاسمونیک (5/0 میلی‌مولار)، قارچ Trichoderma harzianum T22 (10 میلی‌لیتر سوسپانسیون اسپور با غلظت 107× 1 اسپور، به‌ازای هر گیاهچه) و تلفیق هورمون اسید جاسمونیک با قارچ تریکودرما (JA + Th) روی ویژگی‌های رشدی و فیزیولوژیک گیاه فلفل، میزان جذب و ترجیح تخم‌گذاری (آزمون انتخاب آزاد و غیرانتخابی) و پراسنجه‌های جدول زندگی تریپس غربی گل بررسی شد. کلیه مراحل آزمایش در شرایط محیطی ثابت دمای 1±25 درجه سلسیوس و رطوبت 5±65 درصد و شرایط نوری 16 ساعت روشنایی و 8 ساعت تاریکی انجام گرفت. بر اساس نتایج، تمامی پراسنجه‌های جدول زندگی تریپس غربی گل تفاوت معنی‌داری را نشان داد. مقدار نرخ ذاتی افزایش جمعیت (r) برای شاهد و تیمارهای JA، Th و JA + Th به ترتیب 1827/0، 1513/0، 1636/0 و 1332/0 بر روز و نرخ خالص تولیدمثل (R0) برای تیمارهای ذکر شده به ترتیب 22/53، 72/32، 99/38 و 62/25 نتاج ماده تخمین زده شد. تیمار JA + Th موجب افزایش ویژگی‌های رشدی و فیزیولوژیک گیاه فلفل شد و از کیفیت تغذیه‌ای پایینی برای آفت برخوردار بود. نتایج این بررسی می‌تواند در به‌کارگیری تیمار JA + Th برای برنامه‌های مدیریت تلفیقی آفت تریپس غربی گل مورد استفاده قرار گیرد.

چکیده تصویری

مقاومت القایی در فلفل رنگی به‌وسیله قارچ آنتاگونیست Trichoderma harzianum T22 و جاسمونیک اسید در برابر تریپس غربی گلخانه Frankliniella occidentalis (Thysanoptera: Thripidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Induced Resistance in Bell Pepper by Trichoderma Harzianum T22 and Jasmonic Acid Against Frankliniella Occidentalis (Thysanoptera: Thripidae)

نویسندگان [English]

  • Ali Rezaei 1
  • Mohammad Khanjani 1
  • Shahram Farrokhi 2
1 Department of Plantprotection, Faculty of Agriculture, Bu- Ali Sina University, Hamedan, Iran
2 Biological Control Research Department, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
چکیده [English]

The western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) is one of the important greenhouse insect pests with a wide host range. In this study, the effect of treating bell pepper with jasmonic acid (JA) (0.5 mM), Trichoderma harzianum strain T22 (Th) (10 ml per plant from 1×107 spore/ml suspension), and the jasmonic acid with T. harzianum (JA + Th) on the growth and physiological characteristics of the pepper plants, adult selection and oviposition preference (free-choice and no-choice tests), and the life table parameters of WFT were investigated. The experiments were carried out in constant environmental conditions at 25±1 °C, 65±5% RH, and L16: D8 photoperiod. Based on the results, all life table parameters of WFT showed a significant difference. The intrinsic rate of increase (r) for control and JA, Th, and JA + Th treatments were 0.1827, 0.1513, 0.1636, and 0.1332 (day-1), respectively. The net reproductive rate (R0) for the mentioned treatments was estimated as 22.53, 32.72, 38.99, and 25.62 (eggs/individual). The JA + Th treatment increased the growth and physiological characteristics of the pepper plants and had low nutritional quality for the pest. The results of this study can be used in the application of JA + Th treatment for integrated management programs of WFT.

کلیدواژه‌ها [English]

  • Trichoderma
  • Plant hormone
  • Oviposition preference
  • Life table
  • Integrated pest management

© 2025 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Agrawal, A. A. & Kurashige, N. S. (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. Journal of Chemical Ecology 29, 1403-1415.
Ainsworth, E. A. & Gillespie, K. M. (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols 2(4), 875-877.
Akutse, K. S., Maniania, N. K., Fiaboe, K. K. M., Van den Berg, J. & Ekesi, S. (2013) Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on the life-history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology 6(4), 293-301. https://doi.org/10.1016/j.funeco.2013.01.003
Aldaghi, M., Allahyari, H., Hosseininaveh, V. & Behboudi, K. (2021) Effect of Trichoderma harzianum Tr6 in inducing resistance in tomato against Trialeurodes vaporariorum (Hem.: Aleyodidae). Plant Protection (Scientific Journal of Agriculture) 44(3), 107-117. https://doi.org/10.22055/ppr.2021.17128
Alinc, T., Cusumano, A., Peri, E., Torta, L. & Colazza, S. (2021) Trichoderma harzianum strain T22 modulates direct defense of tomato plants in response to Nezara viridula feeding activity. Journal of Chemical Ecology 47, 455-462. https://doi.org/10.1007/s10886-021-01260-3
Alizadeh, H., Behboudi, K., Ahmadzadeh, M., Javan-Nikkhah, M., Zamioudis, C., Pieterse, C. M. & Bakker, P. A. (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biological Control 65(1): 14-23. https://doi.org/10.1016/j.biocontrol.2013.01.009
Altomare, C., Norvell, W. A., Björkman, T. H. O. M. A. S. & Harman, G. (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Applied and Environmental Microbiology 65(7), 2926-2933. https://doi.org/10.1128/AEM.65.7.2926-2933.1999
Azimi, S., Shahin, S. & Alizadeh, A. (2021) Evaluation of bean plant treatment with Trichoderma harzianum TR6 on the biology of bean aphid, Aphis fabaeJournal of Applied Research in Plant Protection 10(1), 1-16. DOI: 10.22034/ARPP.2021.12443
Baker, R. (1988) Trichoderma spp as plant-growth stimulants. Critical reviews in Biotechnology 7(2), 97-106. https://doi.org/10.3109/07388558809150724
Battaglia, D., Bossi, S., Cascone, P., Digilio, M. C., Prieto, J. D., Fanti, P., Guerrieri, E., Lodice, L., Lingua, G., Lorio, M., Maffei, M. E., Massa, N., Ruocco, M., Sasso, R. & Trotta, V. (2013) Tomato below ground–above ground interactions: Trichoderma longibrachiatum affects the performance of Macrosiphum euphorbiae and its natural antagonists. Molecular Plant-Microbe Interactions 26(10), 1249-1256. https://doi.org/10.1094/MPMI-02-13-0059-R
Bernays, E. A. & Chapman, R. F. (2007) Host-plant selection by phytophagous insects (Vol. 2). Springer Science & Business Media.
Black, C. A., Karban, R., Godfrey, L. D., Granett, J. & Chaney, W. E. (2003) Jasmonic acid: a vaccine against leafminers (Diptera: Agromyzidae) in celery. Environmental Entomology 32(5), 1196-1202. https://doi.org/10.1093/ee/32.5.1196
Carey, J. R. (2001) Insect biodemography. Annual Review of Entomology 46(1), 79-110. https://doi.org/10.1146/annurev.ento.46.1.79
Chi, H. (1988) Life table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology 17(1): 26-34. https://doi.org/10.1093/ee/17.1.26
Chi, H. (2017) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/. National Chung Hsing University, Taichung Taiwan.
Chi, H. S. I. N. & Liu, H. S. I. (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinnica 24(2): 225-240.
Cipollini, D. F. & Redman, A. M. (1999) Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato. Journal of Chemical Ecology 25, 271-281.  https:// doi.org /10.1023/A:1020842712349
Cooper, W. R. & Goggin, F. L. (2005) Effects of jasmonate‐induced defenses in tomato on the potato aphid, Macrosiphum euphorbiae. Entomologia Experimentalis et Applicata 115(1), 107-115. https://doi.org/10.1111/j.1570-7458.2005.00289.x
Coppola, M., Cascone, P., Chiusano, M. L., Colantuono, C., Lorito, M., Pennacchio, F., Rao, R., Woo, S. L., Guerrieri, E. & Digilio, M. C. (2017) Trichoderma harzianum enhances tomato indirect defense against aphids. Insect science 24(6), 1025-1033. https://doi.org/10.1111/1744-7917.12475
DeGraaf, H. E. & Wood, G. M. (2009) An improved method for rearing western flower thrips Frankliniella occidentalis. Florida Entomologist 92(4): 664-666. https://doi.org/10.1653/024.092.0424
Emongor, V. (2007) Gibberellin influence on vegetative growth nodulation and yield of Cowpea (Vigna sp.). Journal of Agrobiology 60(4), 509-517.
Haghighi, M. & Mansouri, F. (2019) Effect of Jasmonic acid and Salicylic acid on growth and physiological changes of tomato under salinity stress. Journal of Soil and Plant Interactions-Isfahan University of Technology 9(4), 1-14. http://dx.doi.org/10.29252/ejgcst.9.4.1
Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2(1): 43-56.
Huang, Y. B. & Chi, H. (2013) Life tables of Bactrocera cucurbitae (Diptera: Tephritidae): with an invalidation of the jackknife technique. Journal of Applied Entomology 137(5): 327-339. https://doi.org/10.1111/jen.12002
Hulshof, J., Ketoja, E. & Vänninen, I. (2003) Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomologia Experimentalis et Applicata 108(1), 19-32. https://doi.org/10.1046/j.1570-7458.2003.00061.x
Jalili- Moghadam, M. & Azmayesh- Fard, P. (2004) Thrips of ornamental plants in Tehran and Mahallat. In Proceeding of the 16th Iranian Plant Protection Congress, Tabriz, Iran (p. 160). (In Persian with English summary).
Karimi, J., Dara, S. K, Arthurs, S. (2019) Microbial insecticides in Iran: history, current status, challenges and perspective. Journal of Invertebrate Pathology 165:67–73. https://doi.org/10.1016/j.jip.2018.02.016
Kempster, V. N., Scott, E. S. & Davies, K. A. (2002) Evidence for systemic, cross-resistance in white clover (Trifolium repens) and annual medic (Medicago truncatula var truncatula) induced by biological and chemical agents. Biocontrol Science and Technology 12(5), 615-623. https://doi.org/10.1080/0958315021000016270
Kleifeld, O. & Chet, I. (1992) Trichoderma harzianum interaction with plants and effect on growth response. Plant and Soil 144, 267-272.
Li, C., Wang, P., Menzies, N. W., Lombi, E. & Kopittke, P. M. (2018) Effects of methyl jasmonate on
plant growth and leaf properties. Journal of Plant Nutrtion and Soil Science 3(181), 409-418. https://doi.org/10.1002/jpln.201700373
Mansouri, S. M., Mehrparvar, M., Amiri Domari, M. & Mozafari, H. (2020) Evaluation of physiological indices of induced changes in safflower cultivars under biotic stress. Journal of Plant Research (Iranian Journal of Biology) 32(4), 941-953. https://dorl.net/dor/20.1001.1.23832592.1398.32.4.19.8
Martinuz, A., Schouten, A. & Sikora, R. A. (2012) Systemically induced resistance and microbial competitive exclusion: implications on biological control. Phytopathology 102(3), 260-266. https://doi.org/10.1094/PHYTO-04-11-0120
Mcdonald, J. R., Bale, J. S. & Walters, K. F. (1998) Effect of temperature on development of the western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). European Journal of Entomology 95, 301-306.
Minaei, K. (2013) Thrips (Insecta, Thysanoptera) of Iran: a revised and updated checklist. Zookeys (330): 53. https://doi.org/10.3897%2Fzookeys.330.5939
Mortazavi, N., Aleosfoor, M. & Minaei, K. (2015) Comparison of seven methods for rearing western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). Iran Agricultural Research 34(2): 15-20. https://doi.org/10.22099/iar.2016.3423
Mound, L. A. & Ng, Y. F. (2009) An illustrated key to the genera of Thripinae (Thysanoptera) from South East Asia. Zootaxa, 2265(1), 27-47. https://doi.org/10.11646/zootaxa.2265.1.2
Narmani, A., Arzanlou, M., Babaiahari, A. & Masteri Farahani, H. (2019) Biological control of wheat fusarium head blight using antagonistic strains of commercial and local Trichoderma, isolated from wheat plant rhizosphere. Journal of Applied Research in Plant Protection 8(2), 1-20.
Nemati, A., Zahiri, B. & Khanjani, M. (2020) Systemic changes in tomato induced by foliar-treated hormone and cultivar interactions reduce the fitness of an invasive specialist herbivore, the tomato leaf miner. Iranian Journal of Plant Protection Science 51(2): 221-233. https://doi.org/10.22059/ijpps.2020.299744.1006934
Newman, S. E., Brown, W. M. & Ozbay, N. (2002) The effect of the Trichoderma harzianum strains on the growth of tomato seedlings. In XXVI International Horticultural Congress: Managing Soil-Borne Pathogens: A Sound Rhizosphere to Improve Productivity in 635 (pp. 131-135). https://doi.org/10.17660/ActaHortic.2004.635.16
Ousley, M. A., Lynch, J. M. & Whipps, J. M. (1994) Potential of Trichoderma spp as consistent plant growth stimulators. Biology and Fertility of Soils 17, 85-90.
Pieterse, C. M., van der Does, A., Zamioudis, C., Leon Reyes, H. A. & Van Wees, S. C. (2012) Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28, 489-521. https://doi.org/10.1146/annurev-cellbio-092910-154055
Pruski, K., Duplessis, P., Lewis, T., Astatkie, T., Nowak, J. & Struik, P. C. (2001) Jasmonate effect on in
vitro tuberization of potato (Solanum tuberosum L.) Cultivars under light and dark conditions. Potato
Research
44(4), 315-325.
Qalebi, Z., Modarresi, M., Sohrabi, F., Saberi, D. & Hedayat, M. (2021) Response of Different Tomato Varieties to the Replacement of Chemical Toxins Controlling Tomato Fruit Borer (Helicoverpa armigera Hubner) by Some Endogenous Plant Compounds. Plant Productions 44(4), 531-544. https://doi.org/10.22055/ppd.2021.34980.1940
Reiter, D., Farkas, P., Sojnóczki, A., Király, K. & Fail, J. (2015) Laboratory rearing of Thrips tabaci Lindeman: a review. Bodenkultur. Journal of Management, Food and Environment 66(3-4), 33-40.
Renwick, J. A. A. & Chew, F. S. (1994) Oviposition behavior in Lepidoptera. Annual Review of Entomology 39(1), 377-400. 0066-4170/94/0101-0377S05.00
Salimi, F., Alizadeh, A., Mirzadi Gohari, A. & Javan-Nikkhah, M. (2019) Endophytic fungus, Radulidium subulatum from Phragmites australis in Iran. Mycologia Iranica 6(1), 41-47. DOI: 10.22043/MI.2020.120790
Sánchez-Rodríguez, A. R., Raya-Díaz, S., Zamarreño, Á. M., García-Mina, J. M., del Campillo, M. C. & Quesada-Moraga, E. (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biological Control 116, 90-102. https://doi.org/10.1016/j.biocontrol.2017.01.012
Sarfraz, M., Dosdall, L. M. & Keddie, B. A. (2006) Diamondback moth–host plant interactions: implications for pest management. Crop Protection 25(7), 625-639. https://doi.org/10.1016/j.cropro.2005.09.011
Senthil-Nathan, S., Kalaivani, K., Choi, M. Y. & Paik, C. H. (2009) Effects of jasmonic acid-induced resistance in rice on the plant brownhopper, Nilaparvata lugens Stål (Homoptera: Delphacidae). Pesticide Biochemistry and Physiology 95(2), 77-84.
Singh, A. K. (1997) Effect of leguminous plants on the growth and development of gram pod borer, Helicoverpa armigera. Indian Journal of Entomology 59, 209-214. https://doi.org/10.1016/j.pestbp.2009.07.001
Soldaat, L. L., Boutin, J. P. & Derridj, S. (1996) Species-specific composition of free amino acids on the leaf surface of four Senecio species. Journal of Chemical Ecology 22, 1-12.
Taghdiri, B., Gholami, M., Deljo, A. & Sepehri, A. (2010) Response of tissue culture derived potato
plantlets to nitrogen and jasmonic acid under hydroponic condition. Plant Production Technology
10(1), 69-78.
Tang, J., Liu, L., Huang, X., Li, Y., Chen, Y. & Chen, J. (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Canadian Journal of Microbiology 56(2), 121-127. https://doi.org/10.1139/W09-110
Thaler, J. S. (1999) Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environmental Entomology 28(1), 30-37. https://doi.org/10.1093/ee/28.1.30
Thaler, J. S., Stout, M. J., Karban, R. & Duffey, S. S. (2001) Jasmonate‐mediated induced plant resistance affects a community of herbivores. Ecological Entomology 26(3), 312-324. https://doi.org/10.1046/j.1365-2311.2001.00324.x
van Lenteren, J. C. & Noldus, L. P. J. J. (1990) Whitefly-plant relationships: behavioural and ecological aspects. In: D. Gerling (Ed), Whiteflies: their bionomics, pest status and management. (pp. 47-49). Intercept Ltd, Andover, Hants, UK.
Vega, F. E. (2008). Insect pathology and fungal endophytes. Journal of Invertebrate Pathology 98(3), 277-279. https://doi.org/10.1016/j.jip.2008.01.008
Vinale, F., D'Ambrosio, G., Abadi, K., Scala, F., Marra, R., Woo, S. L., Turra, D. & Lorito, M. (2004) Application of Trichoderma harzianum (T22) and Trichoderma atroviride (P 1) as plant growth promoters, and their compatibility with copper oxychloride. Journal of Plant Pathology 86(4), 336.
War, A. R., Paulraj, M. G., Ahmad, T., Buhroo, A. A., Hussain, B., Ignacimuthu, S. & Sharma, H. C. (2012) Mechanisms of plant defense against insect herbivores. Plant signaling & behavior 7(10), 1306-1320. https://doi.org/10.4161/psb.21663
War, A. R., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. (2011) Jasmonic acid-mediated-induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Journal of Plant Growth Regulation 30(4), 512-523.
Windham, M. T. (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76, 518-521. https://doi.org/10.1094/Phyto-76-518
Zhang, B., Qian, W., Qiao, X., Xi, Y. & Wan, F. (2019) Invasion biology, ecology, and management of Frankliniella occidentalis in China. Archives of Insect Biochemistry and Physiology 102(3), e21613. https://doi.org/10.1002/arch.21613
CAPTCHA Image