تاثیر سطوح نیتروژن و ارقام گوجه فرنگی بر کارایی انگلی زنبور (Trichogramma principium (Hymenoptera: Trichogrammatidae روی تخم کرم میوه خوار (Helicoverpa armigera (Lepidoptera: Noctuidae

نوع مقاله : مقاله کامل، فارسی

نویسندگان

1 گروه گیاه پزشکی دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

2 موسسه تحقیقات گیاه پزشکی کشور،سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، ایران

چکیده

کارایی یک دشمن طبیعی، به عنوان رکن ضروری در موفقیت هر برنامه مهار زیستی وابسته به عوامل متعددی از جمله میزبان می­باشد. اعتقاد بر این است که کیفیت میزبانهای گیاه­خوار دشمنان طبیعی بیشتر بستگی به شرایط تغذیه گیاهی و تفاوت­های ژنتیکی ارقام دارد. در این تحقیق، ظرفیت انگلی زنبور انگل­ واره Trichogramma principium روی تخم Helicoverpa armigera در شش رقم گوجه فرنگی شامل کینگ استون، ریوگرند، ارلی­اوربان، رد­استون، سوپر­استرین­ B و پرایموارلی با چهار سطح نیتروژن (0، 1/2، 0/3، 9/3 گرم در هر گلدان، به صورت اوره 46% در پنج تکرار مطالعه شد. آزمایش­ ها در شرایط اتاقک رشد در دمای 1±25 درجه سیلسیوس و رطوبت نسبی 5±60 درصد و دوره نوری 16:8 ساعت روشنایی به تاریکی انجام شد. بالاترین و پایین ­ترین نرخ خالص انگلی (C0) به‌ترتیب 59/2±39/23 و 00/1±42/13 میزبان / انگل­ واره پرورش یافته روی رقم سوپراسترین­B با بالاترین سطح نیتروژن و ارلی­اوربان شاهد بود.  نرخ تبدیل جمعیت میزبان به نتاج انگل ­واره (Qp) در تمامی تیمار­ها نزدیک به 1 (C0 R0) بود. کمترین و بیشترین نرخ کرانمند انگلی (ω) به عنوان شاخص میزان کارایی این دشمن طبیعی برابر 1525/0 و 3164/0 میزبان/ انگل­ واره/ بر روز روی تخم میزبان­های پرورش یافته روی ارقام ارلی­اوربان با پایین ­ترین سطح نیتروژن و سوپراسترین B با بالاترین سطح نیتروژن بود. در مجموع بیشترین مقدار انگلی در میزبان­های پرورش یافته روی ارقام سوپراسترین­B و کینگ­استون با بالاترین میزان نیتروژن بود. بر اساس این نتایج، ظرفیت انگلی زنبور T. principium روی تخم کرم میوه‌خوار گوجه­ فرنگی با سطح کود نیتروژن همبستگی مثبت داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of nitrogen level and tomato cultivars on the efficiency of Trichogramma principium (Hymenoptera: Trichogrammatidae) on the eggs of Helicoverpa armigera (Lepidoptera: Noctuidae)

نویسندگان [English]

  • F. Salehi 1
  • J. Shirazi 2
  • Gh, H. Gharekhani 1
  • N. Vaez 3
1 Plant Protection Dep.Faculty of Agriculture, University of Maragheh, Maragheh, Iran
2 Iranian Research Institute of Plant Protection; Agricultural Research, Education and Extension Organi-zation (ARREO), Tehran, Iran
3 Department of Plant Protection, Faculty of Agriculture, Azarbaijan Shahid Madani University, Iran
چکیده [English]

The efficiency of natural enemies as the key factor in the success of biological control programs, depends on different elements including the quality of their herbivore hosts. Similarly, it may be influenced by nutritional status and genetic differences of host plants in turn. This study was undertaken to determine the parasitism efficiency of Trichogramma principium (Sugonjaev & Sorokina) on the eggs of Helicoverpa armigera (Hübner) reared on different nitrogen fertilized tomato plant cultivars. All experiments were established in a growth chamber under 25 ± 1°C temperature, 60 ± 5% RH, 16:8 h. (L:D) conditions. Treatments included six tomato cultivars (Kingston, Riogrand, Earlyurbana, Redston, Superstrain-B and Primoearly) with four N levels (0, 2.1, 3.0, 3.9 g/ pot, Nitrogen as Urea 46%), in 5 replications. The value of the net parasitism rate (C0) of T. principium varied from 13.42±1.00 to 23.39± 2.59 hosts on the eggs of H. armigera reared on En0, and SBn+, respectively. The transformation rate from host population to parasitoid offspring (Qp) on all treatments was close to 1 (C0 R0). The finite parasitism rate (ω) which is used to determine the efficiency of a parasitoid, estimated as 0.1525 (min.) and 0.3164 (max.) hosts parasitoid-1 day-1 on the hosts reared on Earlyurbana and Superstrain-B, respectively. In general, T. principium had higher parasitism capacity on the hosts reared on Superstrain-B, Kingston and Riogrand with highest N levels, which were more suitable for parasitoid. This study showed that parasitism capacity of parasitoid was influenced by the host plant cultivar as well as positively correlated with the host plant nitrogen contenets.

کلیدواژه‌ها [English]

  • Biological control
  • Parasitism capacity
  • Nitrogen fertilization
  • Tri-trophic interactions
Amin, M. R., Chakma, A., Alam, M. Z., Hossain, M. M. & Ge, F. (2016) Screening of Tomato Varieties against Tomato Fruit Borer and Associated Plant Characters. SAARC Journal of Agriculture 14(2), 150-161.
Aqueel, M. A., Raza, A. B. M., Balal, R. M., Shahid, M. A., Mustafa, I., Javaid, M. M., & Leather, S. R. (2015) Tritrophic interactions between parasitoids and cereal aphids are mediated by nitrogen fertilizer. Insect science 22(6), 813-820.‏
Bagheri, M.R., Hassanpour, M., Golizadeh, A., Farrokhi, S. & Samih, M.A. (2016) Age-stage two-sex life table and predation capacity of Nesidiocoris tenuis feeding on Trialeurodes vaporariorum on three important greenhouse crops. Biocontrol in Plant Protection 3 (2), 77-96. (In Persian).
Barbosa, P., Gross, P. & Kemper, J. (1991) Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72(5), 1567-1575.‏
Bentz, J. A., Reeves, J., Barbosa, P. & Francis, B. (1996) The effect of nitrogen fertilizer applied to Euphorbia pulcherrima on the parasitization of Bemisia argentifolii by the parasitoid Encarsia formosa. Entomologia Experimentalis et Applicata 78(1), 105-110.‏
Cascone, P., Carpenito, S. Slotsbo, S. Iodice, L. Givskov Sørensen, J. &Holmstrup, M.(2015) Improving the efficiency of Trichogramma achaeae to control Tuta absoluta. Biological control60(6), pp.761-771.
Chailleux, A., Desneux, N., Seguret, J., Thi Khanh, H., Maignet, P. & Tabone, E. (2012) Assessing European egg parasitoids as a mean of controlling the invasive South American tomato pinworm Tuta absoluta. Plos One 7(10), 48068.
Chi, H. & Yang, T. C. (2003) Two-sex life table and predation rate of Propylaea japonica Thunberg (Coleoptera: Coccinellidae) fed on Myzus persicae (Sulzer) (Homoptera: Aphididae). Environmental Entomology 32(2), 327-333.‏
Chi, H. & Su, H. Y. (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental entomology 35(1), 10-21.‏
Chi, H., Huang, Y. B., Allahyari, H., Yu, J. Z., Mou, D. F., Yang, T. C., Farhadi, R. & Gholizadeh. M. (2011) Finite predation rate: A novel parameter for the quantitative measurement of predation potential of predator at population level. Nature Precedings hdl:10101/npre.2011.6651.1.
Chi, H. (2016) TWOSEX-MS Chart: a computer program for the age-stage, two-sex life table analysis. URL National Chung Hsing University, Taichung, Taiwan, Available from: (http://140.120.197.173/Ecology/Download/Twosex-MSChart.zip) (accessed 1March 2017).
Cleary, A. J., Cribb, B. W. & Murray, D. A. (2006) Helicoverpa armigera (Hübner): can wheat stubble protect cotton plants against attack. Austral Entomology 45(1), 10-15.
De Backer, L., Caparros Megido, R., Haubruge, E. & Verheggen, F. (2015) Macrolophus pygmaeus (Rambur) as an efficient predator of the tomato leafminer Tuta absoluta (Meyrick). Europe Journal of Biotechnology, Agronomy, Society and Environment 18(4), 536-543.
Dutton, A., Cerutti, F., & Bigler, F. (1996) Quality and environmental factors affecting Trichogramma brassicae efficiency under field conditions. Entomologia Experimentalis et Applicata 81(1), 71-79.‏
Ebrahimi, M., Sahragard, A., Talaei-Hassanloui, R., Kavousi, A. & Chi, H. (2013) The life table and parasitism rate of Diadegma insulare (Hymenoptera: Ichneumonidae) reared on larvae of Plutella xylostella (Lepidoptera: Plutellidae), with special reference to the variable sex ratio of the offspring and comparison of jackknife and bootstrap techniques. Annals of the Entomological Society of America 106(3), 279-287.‏
E-Loeb, G., Stout, M.J. & Duffey, S. S. (1997) Drought stress in tomatoes: changes in plant chemistry and potential nonlinear consequences for insect herbivores. Oikos 79,456–68.
Farrar, R. R, Barbour, J. D. & Kennedy, G. G. (1994) Field evaluation of insect resistance in a wild tomato and its effect on insect parasitoids. Entomologia Experimentalis et Applicata 71, 211–26
Farhadi, R., Allahyari, H. & Chi, H. (2011) Life table and predation capacity of Hippodamia variegata (Coleoptera: Coccinellidae) feeding on Aphis fabae (Hemiptera: Aphididae). Biological Control 59(2), 83-89.‏
Fitt, G. P. (1989) The ecology of Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) role of certain plant attributes. Australian Journal of Zoology 37, 678-833.
Fox, L. R., Kester, K. M., & Eisenbach, J. (1996) Direct and indirect responses of parasitoids to plants: sex ratio, plant quality and herbivore diet breadth. Entomologia Experimentalis et Applicata 80(1), 289-292.
Giles, K. L., Berberet, R. C., Zarrabi, A. A. & Dillwith, J. W. (2002) Influence of alfalfa cultivar on suitability of Acyrthosiphon kondoi (Homoptera: Aphididae) for survival and development of Hippodamia convergens and Coccinella septempunctata (Coleoptera: Coccinellidae) Economic Entomology 95, 552-557.
Gols, R., Raaijmakers, C. E., Van Dam, N. M., Dicke, M., Bukovinszky, T. & Harvey, J. A. (2007) Temporal changes affect plant chemistry and tritrophic interactions. Basic and Applied Ecology 8(5), 421-433.‏
Gols, R., Witjes, L., Van Loon, J. J., Posthumus, M. A., Dicke, M. & Harvey, J. A. (2008) The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomologia Experimentalis et Applicata 128(1), 99-108.‏
Green, P. W. C., Stevenson, P. C., Simmonds, M. S. J. & Sharma, H. C. (2002) Can larvae of the pod-borer, Helicoverpa armigera (Lepidoptera: Noctuidae), select between wild and cultivated pigeonpea Cajanus sp. (Fabaceae). Bulletin of entomological research 92(1), 45-51.‏
Harvey, J. A., Van Nouhuys, S., & Biere, A. (2005) Effects of quantitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. Journal of Chemical Ecology 31(2), 287-302.‏
Holton, M. K., Lindroth, R. L. & Nordheim, E. V. (2003) Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137(2), 233-244.‏
Huang, Y. B., & Chi, H. (2012) Assessing the application of the Jackknife and Bootstrap techniques to the estimation of the variability of the Net Reproductive Rate and Gross Reproductive Rate: a Case Study in Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae). Journal of Agricultural and Forest 61(1), 37-45.
Hunter, M. D. (2003) Effects of plant quality on the population ecology of parasitoids. Agricultural and Forest Entomology 5(1), 1-8.‏
Jiang, N. & Schulthess, F. (2005) The effect of nitrogen fertilizer application to maize and sorghum on the bionomics of Chilo partellus (Lepidoptera: Crambidae) and the performance of its larval parasitoid Cotesia flavipes (Hymenoptera: Braconidae). Bulletin of entomological research 95(6), 495-504.‏
Johnson, M. T. (2008) Bottom-up effects of plant genotype on aphids, ants, and predators. Ecology 89(1), 145-154.
Kagata, H. & Ohgushi, T. (2007) Carbon–nitrogen stoichiometry in the tritrophic food chain willow, leaf beetle, and predatory ladybird beetle. Ecological research 22(4), 671-677.‏
Kalule, T. & Wright, D. J. (2002) Tritrophic interactions between cabbage cultivars with different resistance and fertilizer levels, cruciferous aphids and parasitoids under field conditions. Bulletin of entomological research 92(1), 61-69.‏
Khanamani, M., Fathipour, Y. & Hajiqanbar, H. (2015) Assessing compatibility of the predatory mite Typhlodromus bagdasarjani (Acari: Phytoseiidae) and resistant eggplant cultivar in a tritrophic system. Annals of the Entomological Society of America 108(4), 501-512.
Karami, S., Fathipour, Y., Talebi, A. A. & Reddy, G. V. P. (2018) Parasitism capacity and searching efficiency of Diaeretiella rapae parasitizing Brevicoryne brassicae on susceptible and resistant canola cultivars. Journal of Asia Pacific Entomology 21(4), 1095-1101.
Karp, D. S., Moses, R., Gennet, S., Jones. M. S., Joseph, Sh., M’Gonigle, L. K., Ponisio, L C., Snyder W. E. & Kremen, C. (2016) Agricultural practices for food safety threaten pestcontrol services for fresh produce. Applied Ecology 53(5), pp.1402-1412.
Kennedy, G. G. (2003)Tomato, Pests, Parasitoids, and Predators: Tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology 48, 51–72
Krauss, J., Harri, S. A., Bush, L., Husi, R., Bigler, L., Power, S. A. & Muller, C. B. (2007) Effects of fertilizer, fungal endophytes and plant cultivar on the performance of insect herbivores and their natural enemies. Functional Ecology 21(1), 107-116.‏
Lill, J. T., Marquis, R. J. & Ricklefs, R. E. (2002) Host plants influence parasitism of forest caterpillars. Nature 417(6885), 170.‏
Lietti, M. M., Botto, E. & Alzogaray, R. A. (2005) Insecticide resistance in argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotropical Entomology 34(1), 113-119.
Lu, M. CH., Chen, H.R. & Wu, Y. H. (2018) Current status and future perspectives on natural enemies for pest control in Taiwan. Biocontrol Science and Technology 28(10), 953-960.
Mou, D. F., Lee, C. C., Smith, C. L. & Chi, H. (2015) Using viable eggs to accurately determine the demographic and predation potential of Harmonia dimidiata (Coleoptera: Coccinellidae). Applied entomology 139(8), 579-591.
Negahban, M., Sedaratian-Jahromi, A., Ghane-Jahromi, M. & Haghani, M. (2016) Temperature-dependent parasitism in Trichogramma brassicae (Hym.: Trichogrammatidae), modeling finite parasitism rate. Entomological Society of Iran 36(1), 13-27. (In Persian).
Nemati, A. (2016) Bionomics of predator bug Macrolophus pygmaeus (Heteroptera: Miridae) feeding on tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae) M.Sc. thesis, College of Agriculture, Maragheh University. (In Persian with English summary).
Nikooei, M., Fathipour, Y., Jalali Javaran, M. & Soufbaf, M. (2015) Influence of genetically manipulated Brassica genotypes on parasitism capacity of Diadegma semiclausum parasitizing Plutella xylostella. Agricultural Science and Technolog 17, 1743-1753.
Nikooei, M., Fathipour, Y., Javaran, M. J. & Soufbaf, M. (2017) Genetically manipulated Brassica genotypes affect demography and performance of Diadegma semiclausum parasitizing Plutella xylostella. Journal of applied entomology 141(3), 161-171.
Ode, P. J. (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annual Review of Entomology 51, 163-185.‏
Pinto, J. D. and Stouthamer, R. S. (1994) Systematics of the Trichogrammatidae with emphasis on Trichogramma. In: Wajnberg, E., & Hassan, S. A. (Eds.). Biological control with egg parasitoids.‏1-36. Wallingford, Oxon: CAB International.
Pope, T. W., Girling, R. D., Staley, J. T., Trigodet, B., Wright, D. J., Leather, S. R., van Emden, H. F. & Poppy, G. M. (2012) Effects of organic and conventional fertilizer treatments on host selection by the aphid parasitoid Diaeretiella rapae. Applied Entomology 136(6), 445-455.
Ranjbar Aghdam, H. & Mahmoudian, R. (2014) Effect of different rice varieties on age specific life table and population growth parameters of Trichogramma brassicae, the egg parasitoid of the Striped Stem Borer, Chilo suppressalis. Iranian Journal of Plant Protection Science, 45(1), 1-11. [In Persian with English Summary].
Routray, S. & Hari-Prasad, K. V. (2016) Tri-trophic interaction involving host plants, black legume aphid, Aphis craccivora (Hemiptera: Aphididae) and the predator, Cheilomenes sexmaculata (Coleoptera: Coccinellidae).European Journal of Entomology 113, 551-557.
Saemi, S., Rahmani, H., Kavousi, A. & Chi, H. (2017) Group-rearing did not affect the life table and predation rate of Phytoseiulus persimilis (Acari: Phytoseiidae) fed on Tetranychus urticae. Systematic and Applied Acarology 22(10), 1698-1714.
Sarfraz, M., Dosdall, L. M. & Keddie, A. B.(2009a) Fitness of the parasitoid Diadegma insulare is affected by its host's food plants. Basic and Applied Ecology 10(6), 563-572.
Sarfraz, R. M., Dosdall, L. M. & Keddie, A. B. (2009b) Bottom-up effects of host plant nutritional quality on Plutella xylostella (Lepidoptera: Plutellidae) and top-down effects of herbivore attack on plant compensatory ability. European Journal of Entomology 106(4), 583-594.‏
Siqueira, H. A. A., Guedes, R. N. C., Fragoso, D. D. B. & Magalhaes, L. C. (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management 47(4), 247-251.‏
Staley, J. T., Girling, R. D., StewartJones, A., Poppy, G. M., Leather, S. R. & Wright, D. J. (2011) Organic and conventional fertilizer effects on a tritrophic interaction: parasitism, performance and preference of Cotesia vestalis. Applied Entomology 135(9), 658-665.
Tabone, E., Bardon, C., Desneux, N. & Wajnberg, E. (2010) Parasitism of different Trichogramma species and strains on Plutellaxylostella L. on greenhouse cauliflower. Pest Science 83(3), 251–256
Teakle, R. E. (1991) Laboratory culture of Heliothis species and identification of disease. In: M. P. Zalucki, (Ed.), Heliothis: research methods and prospects. Springer, New York, NY. 22-29.
Tuan, S. J., Yeh, C. C., Atlihan, R. & Chi, H. (2016) Linking life table and predation rate for biological control: A comparative study of Eocanthecona furcellata (Hemiptera: Pentatomidae) fed on Spodoptera litura (Lepidoptera: Noctuidae) and Plutella xylostella (Lepidoptera: Plutellidae).Economic Entomology 109(1), 13-24.‏
Wang, S. Y., Chi, H. & Liu, T. X. (2016). Demography and parasitic effectiveness of Aphelinus asychis reared from Sitobion avenae as a biological control agent of Myzus persicae reared on chili pepper and cabbage. Biological control 92, 111-119.
Wilkens, R.T., Spoerke, J.M. & Stamp, N.E. (1996). Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology 77, 247-58.
Wilcox, J. & Howland, A. (1963) The tomato fruitworm: How to control it. Entomology Research 12, 354-367.
Yanquin, D. C. & shijun, M. f. (1985) Distribution and econornic importapce of Heliothis armigera and it natural enernies in China. Enviromental Entomology 4, 44-446.
Yu, J. Z., Chi, H. & Chen, B. H. (2013). Comparison of the life tables and predation rates of Harmonia dimidiata (F.) (Coleoptera: Coccinellidae) fed on Aphis gossypii Glover (Hemiptera: Aphididae) at different temperatures. Biological Control 64(1), 1-9.
Zaller, J. G., Moser, D., Drapela, T., Schmoger, C. & Frank, T. (2009) Parasitism of stem weevils and pollen beetles in winter oilseed rape is differentially affected by crop management and landscape characteristics. Biocontrol 54(4), 505-514.‏
Zolfi Bavaryani, M. & Basirat, M. )2016( Tomato plant nutrition guide In order to reduce the residual nitrate in the product. No. 48658. Institute for Natural Resources and Resources Research, Bushehr, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran. 21 pp. (In Persian).