مـدل‌سازی رشـد جمعیت شتـه گنـدم - گـل سـرخ (Hemiptera: Aphididae)Metopolophium dirhodum در شـرایط مـزرعه

نوع مقاله : مقاله کامل، فارسی

نویسندگان

1 مؤسسة تحقیقات گیاه‌پزشکی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان لرستان، سازمان تحقیقات، آموزش و ترویج کشاورزی، لرستان، ایران.

چکیده

شته گندم­–­گل­ سرخ، Metopolophium dirhodum یکی از مهمترین شته ­های مزارع گندم و جو بوده و جمعیت آن در مزرعه به سرعت افزایش می­یابد. در این مطالعه، سه سری داده مربوط به نوسانات جمعیت شته گندم­–­گل­سرخ در یک مزرعه گندم در ورامین (تهران) در سال های 1378 تا 1380 و دو سری داده در یک مزرعه جو در منطقة الشتر استان لرستان در سال‌های 1396 و 1397 برای مدل­سازی رشد جمعیت این شته استفاده شد. نتایج نشان داد، مدل­های نرمال و مربع سکانت هذلولوی نسبت به دو مدل­ لجستیک و رشد نمایی توصیف بهتری از تغییرات جمعیت شته گندم­–­گل­سرخ در کل فصل برای تمام سری داده ­ها در مزارع گندم و جو ارائه دادند. مدل­های نرمال و مربع سکانت هذلولوی به خوبی با داده­های مربوط به تغییرات جمعیت شته گندم­– گل­سرخ برازش یافتند، توصیف زیستی منطقی از تغییرات جمعیت شته ارائه دادند و یک مبنای آماری قدرتمند برای تجزیه و تحلیل داده های تجربی به دست آمده در این تحقیق بودند. پراسنجه‌های این مدل­ها عبارتند از پیش­بینی اندازه اوج جمعیت (Nmax)، پیش­بینی زمان اوج جمعیت (tmax) و نرخ تولد سرانه تقریبی که از نظر کاربردی اهمیت دارند. در مجموع نتایج این تحقیق نشان داد که مدل­های رگرسیونی نرمال و مربع سکانت هذلولوی با منحنی­های فراوانی شته برازش خوبی داشته و می ­توان توسط پراسنجه‌های این مدل­ ها، پراسنجه‌های مدل مکانیکی را تخمین زد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Population growth modeling of rose‌-‌grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae) on wheat in field condition

نویسندگان [English]

  • M. Amir-Maafi 1
  • Shahram Shahrokhi 1
  • M. R. Jamshidi 2
1 Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organi-zation (AREEO), Tehran, Iran
2 Lorestan Agricultural and Natural Resources Research Center, AREEO, Lorestan, Iran.
چکیده [English]

The rose-grain aphid, Metopolophium dirhodum is one of the most important species among wheat and barley aphids and its population trajectory in field is characterized by rapid boom. In the present study, three datasets from M. dirhodum population in a wheat field in Varamin (Tehran) from 1999 to 2001 and two datasets from a barley field in Aleshtar (Lorestan) in 2017 and 2018 were used for modeling the aphid population dynamics. We demonstrate that Normal and Hyperbolic Secant Squared models presented a much better description of M. dirhodum population dynamics in the whole season for all datasets from wheat and barley fields than the Exponential or Logistic Growth models. The Normal and Hyperbolic Secant Squared model analysis of data showed that the models were useful representations of the data, gave biologically reasonable descriptions of rose-grain aphid population dynamics, and were statistically powerful basis for the analysis of experimental data obtained in this research. The parameters of two mentioned models are the predicted peak size, Nmax, the predicted time of peak, tmax, and an approximate per capita birth rate, all of which are of interest in practical applications. Overall, the results of this study showed that the Normal and Hyperbolic Secant Squared regression models were shown to fit diverse abundance curves adequately and the parameters of the mechanical model can be estimated by the parameters of these models.

کلیدواژه‌ها [English]

  • Wheat
  • Rose-grain aphid
  • Population growth
  • Modeling
Amirnazari, M. (2000) Fauna of wheat aphids and their natural enemies in Karaj, Iran. M. Sc. thesis, Islamic Azad University of Tehran, Research and Science Branch, 71 pp. (In Persian with English summary).
Asin, L. & Pons, X. (2001) Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environmental Entomology 30(6), 1127-1134.
Balckman, R. L. & Eastop, V. F. (1985) Aphids on the World's Crops: An Identification Guide. J. Wiley.
Barlow, N. & Dixon, A. F. G. (1980) Simulation of lime aphid population dynamics. Pudoc., Wageningen.
Bernays, E. A., & Chapman, R. E. (1994) Behavior: the process of host-plant selection. Host-Plant Selection by Phytophagous Insects, 95-165.
Costamagna, A. C., Van der Werf, W., Bianchi, F. J. J. A. & Landis, D. A. (2007) An exponential growth model with decreasing r captures bottom up effects on the population growth of Aphis glycines Matsumura (Hemiptera: Aphididae). Agricultural and Forest Entomology 9(4), 297-305.
Dixon, A. F. G. (1987a) Cereal aphids as an applied problem. Agricultural Zoology Reviews 2, 1-57.
Dixon, A. F. G. (1987b) The way of life of aphids: host specificity, speciation and distribution. Aphids, Their Biology, Natural Enemies and Control, 197-207.
Douglas, A. E. (2003) The nutritional physiology of aphids. Advances in Insect Physiology 31(31), 73-140.
Hodjat, S. H. & Azemayeshfard, P. (1986) Aphids of wheat and other Graminae in Iran. Iranian Journal of Applied Entomology and Phytopathology 54 (1 & 2), 83-109. [In Persian with English summary].
Holland, J. M. & Thomas, S. R. (1996) Quantifying the impact of polyphagous invertebrate predators in controlling cereal aphids and in preventing wheat yield and quality reductions. Annals of Applied Biology 131(3), 375-397.
Honek, A., Jarosik, V. & Dixon, A. F. G. (2006) Comparing growth patterns among field populations of cereal aphids reveals factors limiting their maximum abundance. Bulletin of Entomological Research 96(3), 269.
Jones, M. G. (1979) Abundance of aphids on cereals from before 1973 to 1977. Journal of Applied Ecology 1-22.
Johnson, N. L. & Kotz, S. (1970) Continuous Univariate Distributions-1. Wiley, New York.
Kindlmann, P. (1985) A model of aphid population with age structure. In: Mathematics in Biology and Medicine (pp. 72-77). Springer, Berlin, Heidelberg.
Kindlmann, P. (2004) A simple aphid population model. pp. 325–330 in Simon, J.C., Dedryver, C.A., Rispe, C. & Hulle, M. (Eds.) Aphids in a New Millennium. INRA, Paris.
Kindlmann, P., & Dixon, A. F. G. (1996) Population dynamics of a tree-dwelling aphid: individuals to populations. Ecological Modelling, 89(1-3), 23-30.
Kindlmann, P. & Stadler, B. (2004) Temporal fluctuations in through fall carbon concentrations in a spruce forest. Ecological Modelling 176(3-4), 381-388.
Kindlmann, P., Arditi, R., & Dixon, A. F. G. (2004) A simple aphid population model. In Aphids in a new millennium. Proceedings of the Sixth International Symposium on Aphids, September, 2001, Rennes, France (pp. 325-330). Institut National de la Recherche Agronomique.
Matis, J. H. & Al-Muhammed, M. J. (2010) Theory and application of the logistic probability density function as a population growth model. Damascus University Journal for Basics Science 26(1), 9-19.
Matis, J. H., Kiffe, T. R., Matis, T. I. & Stevenson, D. E. (2005) Nonlinear stochastic modeling of aphid population growth. Mathematical Biosciences 198(2), 148-168.
Matis, J. H., Kiffe, T. R., Matis, T. I. & Stevenson, D. E. (2006) Application of population growth models based on cumulative size to pecan aphids. Journal of Agricultural, Biological, and Environmental Statistics 11(4), 425.
Matis, J. H., Kiffe, T. R., Matis, T. I. & Stevenson, D. E. (2007a) Stochastic modeling of aphid population growth with nonlinear, power-law dynamics. Mathematical Biosciences 208(2), 469-494.
Matis, J. H., Kiffe, T. R., Matis, T. I., Jackman, J. A. & Singh, H. (2007b) Population size models based on cumulative size, with application to aphids. Ecological Modelling 205(1-2), 81-92.
Matis, J. H., Kiffe, T. R., Matis, T. I. & Stevenson, D. E. (2007c) Stochastic modeling of aphid population growth with nonlinear, power-law dynamics. Mathematical Biosciences 208(2), 469-494.
Matis, J. H., Kiffe, T. R., Matis, T. I., Jackman, J. A., Grant, W. E. & Singh, H. (2008a) On the use of growth rate parameters for projecting population sizes: Application to aphids. Ecological modelling 213(1), 133-142.
Matis, J. H., Kiffe, T. R., Werf, W. V. D., Costamagna, A. C., Matis, T. I. & Michels Jr, G. J. (2008 b) Comparisons of two symmetric density function solutions of aphid population growth models. Proceedings of the Kansas State University Conference on Applied Statistics in Agriculture. Available from: https://doi.org/10.4148/2475-7772.1097
Matis, J. H., Kiffe, T. R., van der Werf, W., Costamagna, A. C., Matis, T. I. & Grant, W. E. (2009) Population dynamics models based on cumulative density dependent feedback: A link to the logistic growth curve and a test for symmetry using aphid data. Ecological Modelling 220(15), 1745-1751.
Matis, J. H., Al-Muhammed M. J. & van der Werf, W., (2010) Using the logistic pdf model to mitigate autocorrelation in growth curve analysis. Journal of the Indian Society of Agricultural Statistics 64(2), 229-236.
Metcalf, R. L. & Metcalf, R. A., (1995) Destructive and useful insects, 5th ed. McGraw-Hill, New York.
Morgan, D., Walters, K. F. A. & Aegerter, J. N. (2001) Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bulletin of Entomological Research 91(1), 47.
Noori, P. & A. Rezwani, (1994) Wheat aphids and their population fluctuations in wheat fields of Tehran province, Iran. Journal of Entomological Society of Iran 14: 35-44.
Prajneshu, C. S. (1998) A nonlinear statistical model for aphid population growth. Journal of the Indian Society of Agricultural Statistics 51, 73-80.
Rezwani, A., (2001) Key to the aphids (Hemiptera: Aphidinea) in Iran. Ministry of Jihad- e Agriculture, Agricultural Research, Education and Extention Organization. 304 pp.
SAS Statistical Analysis System. (2013) SAS/STAT user's guide, version 9.4. SAS Institute. Cary, NC.
Shahrokhi, S. (2003) Study of wheat aphids and their population dynamics in wheat fields of Varamin region, Iran. 181 pp., Ph.­D. thesis. Islamic Azad University of Tehran, Research and Science Branch. [In Persian with English summary].
Shahrokhi, S., & Amir-Maafi, M. (2011a) Sequential sampling plan of Metopolophium dirhodum (Hemiptera: Aphididae) in wheat fields. Journal of Entomological Society of Iran, 31(1). 69-82.
Shahrokhi, S., & Amir-Maafi, M. (2011b) Binomial sampling plan of Metopolophium dirhodum in irrigated wheat fields. Applied Entomology and Phytopathology, 79(1). 117-133.
Shahrokhi, S., & Amir-Maafi, M. (2013) Biology of apterous morph of rose grain aphid. Metopolophium dirhodum (Hem.: Aphididae) on wheat in laboratory condition. Applied Entomology and Phytopathology, 81(1).43-50.
Sigsgaard, L. (2002) A survey of aphids and aphid parasitoids in cereal fields in Denmark, and the parasitoids' role in biological control. Journal of Applied Entomology 126, 101-107.
Skirvin, D. J., Perry, J. N. & Harrington, R. (1997) The effect of climate change on an aphid–coccinellid interaction. Global Change Biology 3(1), 1-11.
SysStat. (2012) SigmaPlot for Windows, version 12.0.
Tsoularis, A. & Wallace, J. (2002) Analysis of logistic growth models. Mathematical Biosciences 179(1), 21-55.
Van der Putten, W. H., Vet, L. E., Harvey, J. A. & Wäckers, F. L. (2001) Linking above-and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution 16(10), 547-554.
Verhulst, P. F. (1838) Notice sur la loi que la population suit dans son accroissement. Correspondance Mathématique et Physique 10, 113-126.
Williams, I. S., Van Der Werf, W., Dewar, A. M. & Dixon, A. F. G. (1999) Factors affecting the relative abundance of two coexisting aphid species on sugar beet. Agricultural and Forest Entomology 1(2), 119-125.