جداسازی قارچ‌های بیمارگر حشرات از خاک‌های زراعی و بکر و ارزیابی بیمارگری آنها روی سوسک Callosobruchus maculatus (Coleoptera:Chrysomelidae)

نوع مقاله : مقاله کامل، انگلیسی

نویسندگان

گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران

10.52547/jesi.42.1.3

چکیده

هدف این مطالعه بررسی قارچ‌های بیماری‌زای حشرات مرتبط با مناطق مختلف اکولوژیکی از جمله جنگل‌ها، باغ‌ها، مزارع و خاک‌های مرتعی استان کرمانشاه بود. برای ارزیابی‌های مورفولوژیکی، مولکولی، شاخص تنوع و ارزیابی بیماری‌زایی قارچ‌های بیماری‌زای حشرات بومی، نمونه برداری از 41 منطقه مختلف انجام شد. با استفاده از روش طعمه‌گذاری با استفاده از لاروهای Ephestia kuehniella (Zeller)، 114 جدایه قارچ که 39 جدایه از جنگل‌ها، 38 جدایه از مزارع، 22 جدایه از مراتع و 15 جدایه از خاک‌های باغی بودند، بدست آمد. بر اساس ویژگی‌های مورفولوژیکی و مطالعه توالی‌های نسخه برداری شده داخلی (ITS) DNA ریبوزومی، قارچ‌های بدست آمده شامل گونه‌های Alternaria chlamydosporigen، Aspergillus nomius، Beauveria bassiana، B. pseudobassiana، B. brongniartium، Chaetomium elatum، Fusarium equiseti، F. oxysporum، Fusarium sp. ، Meyerozyma guilliermondii، Paramyrothecium roridum، Penicillium sp.، Penicillium sizovae و P. solitum بودند. نتایج حاصله از این مطالعه نشان داد غنای گونه‌ای در خاک-های جنگل بلوط بیشتر از مناطق دیگر و خاک‌های زراعی، باغی و مرتعی به ترتیب در ردیف‌های بعدی قرار داشتند. علاوه بر این، خاک‌های جنگلی بلوط دارای مقادیر بالایی از شاخص‌های تنوع بودند، که شاخص سیمپسون ۹۷/۰، شاخص شانون 3.30، شاخص تعادل ۶۹/۰ و فیشر آلفا 25.8. شاخص دومینانس در مراتع نسبت به سایرین بیشتر بود. پس از سنجش اولیه، فعالیت حشره‌کشی سه جدایه منتخب از قارچ‌های بیمارگر شامل، Beauveria brongniartii، B. bassiana و B. pseudobassiana روی حشره بالغ سوسک لوبیا چشم بلبلی، Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) به‌عنوان میزبان جدید مورد آزمایش قرار گرفت. از نظر شاخص حشره کشی جدایه های مورد مطالعه همگی بیمارگری بالایی روی حشرات بالغ سوسک لوبیا نشان دادند. مرگ و میر حشرات مورد آزمایش وابسته به دوز بود. نتایج این مطالعه نشان داد کاربرد این قارچ‌های بومی به عنوان عوامل کنترل زیستی موثر برای برنامه های مدیریت آفات امیدوار کننده هستند.

چکیده تصویری

جداسازی قارچ‌های بیمارگر حشرات از خاک‌های زراعی و بکر و ارزیابی بیمارگری آنها روی سوسک  Callosobruchus maculatus  (Coleoptera:Chrysomelidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Isolation of entomopathogenic fungi from cultivated and uncultivated soils and evaluation of virulence against Callosobruchus maculatus (F.) (Coleoptera:Chrysomelidae)

نویسندگان [English]

  • Hadi Mehrmoradi
  • Samad Jamali
  • Hamid Reza Pourian
Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran
چکیده [English]

We aimed to explore the entomopathogenic fungi (EPF) from the different ecosystems including forests, gardens, fields, and rangeland soils in Kermanshah province, Iran. Trials were carried out on morphological, molecular characterization, diversity indices, and virulence assessments of indigenous EPF from 41 sampling sites of various localities. Using the Ephestia kuehniella (Zeller) as host bait, 114 fungal isolates were recovered-i.e., 39 from forests, 38 from fields, 22 from rangelands, and 15 from garden soils. Based on morphological features and the sequence analysis of the internal transcribed spacer (ITS) of the ribosomal DNA, the recovered entomopathogenic fungi were identified as Alternaria chlamydosporigena, Aspergillus nomius, Beauveria bassiana, B. pseudobassiana, B. brongniartii, Chaetomium elatum, Fusarium equiseti, F. oxysporum, Fusarium sp., Meyerozyma guilliermondii, Paramyrothecium roridum, Penicillium sizovae, P. solitum and Penicillium sp.. Higher species richness was found in the oak forest soils compared with fields, gardens, and rangelands. Additionally, the oak forest soils had high values of diversity indices, i.e., Simpson Ds (0.97), Shannon (3.30), Equitability (0.69), and Fisher's alpha (25.8). The dominance index was higher in the rangelands compared with the others. Following the priliminary assays, the insecticidal activity of three selected EPF isolates, including Beauveria brongniartii, B. bassiana, and B. pseudobassiana was tested against adults of the cowpea beetle, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae: Bruchinae) as host. Hypervirulent strains caused high mortality considered as promising effective biocontrol agents in insect pest management programs.

کلیدواژه‌ها [English]

  • Molecular identification
  • Fungal biodiversity
  • Local entomopathogenic fungi
  • Virulence
  • Iran

©2022 by Author(s), Published by Entomological Society of Iran
This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Abdel-Azeem, A. M. (2020) Taxonomy and biodiversity of the genus Chaetomium in different habitats. In Recent Developments on Genus Chaetomium. pp. 3–77. Springer, Cham.
Alali, S., Mereghetti, V., Faoro, F., Bocchi, S., Azmeh, F. Al. & Montagna, M. (2019) Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates. PLoS ONE 14(2), 1–13.
Barra, P., Rosso, L., Nesci, A. & Etcheverry, M. (2013) Isolation and identification of entomopathogenic fungi and their evaluation against Tribolium confusum, Sitophilus zeamais, and Rhyzopertha dominica in stored maize. Journal of Pest Science 86(2), 217–226.
Batta, Y. A. & Kavallieratos, N. G. (2018) The use of entomopathogenic fungi for the control of stored-grain insects. International Journal of Pest Management 64(1), 77–87.
Booth, C. (1971) Methods in Microbiology. Academic Press.
Burgess, L. W. & Summerell, B. A. (1992) Mycogeography of Fusarium: survey of Fusarium species in subtropical and semi-arid grassland soils from Queensland, Australia. Mycological Research 96(9), 780–784.
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17(4), 540–552.
Chang, J. C., Wu, S. S., Liu, Y. C., Yang, Y. H., Tsai, Y. F., Li, Y. H., Tseng, C. T., Tang, L. C. & Nai, Y. S. (2021) Construction and selection of an entomopathogenic fungal library from soil samples for controlling Spodoptera litura. Frontiers in Sustainable Food Systems 5, 596316.
Chen, Z. D., Li, P. L., Chai, A. L., Guo, W. T., Shi, Y. X., Xie, X. W. & Li, B. J. (2018) Crown canker caused by Paramyrothecium roridum on greenhouse muskmelon (Cucumis melo) in China. Canadian Journal of Plant Pathology 40(1), 115–120.
Cherry, A. J., Abalo, P. & Hell, K. (2005) A laboratory assessment of the potential of different strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. Journal of Stored Products Research 41(3), 295–309.
Corte, L., Di Cagno, R., Groenewald, M., Roscini, L., Colabella, C., Gobbetti, M. & Cardinali, G. (2015) Phenotypic and molecular diversity of Meyerozyma guilliermondii strains isolated from food and other environmental niches, hints for an incipient speciation. Food Microbiology 48, 206-215.
da Silva Santos, A. C., Diniz, A. G., Tiago, P. V. & de Oliveira, N. T. (2020) Entomopathogenic Fusarium species: a review of their potential for the biological control of insects, implications and prospects. Fungal Biology Reviews 34(1), 41–57.
Dababat, A. & Sikora, R. A. (2007) Importance of application time and inoculum density of Fusarium oxysporum 162 for biological control of Meloidogyne incognita on tomato. Nematropica 267–276.
Dal Bello, G. M., Fusé, C. B., Pedrini, N. & adín, S. B. (2018) Insecticidal efficacy of Beauveria bassiana, diatomaceous earth and fenitrothion against Rhyzopertha dominica and Tribolium castaneum on stored wheat. International Journal of Pest Management 64(3), 279–286.
Diaz, P. L., Hennell, J. R. & Sucher, N. J. (2012) Genomic DNA extraction and barcoding of endophytic fungi. In Sucher, N.J., Hennell, J.R. and Carles, M.C. (eds) Plant DNA Fingerprinting and Barcoding, pp. 171–179. Springer Science + Business Media, Berlin.
Evangelista, P. H., Mohamed, A. M., Hussein, I. A., Saied, A. H., Mohammed, A. H. & Young, N. E. (2018) Integrating indigenous local knowledge and species distribution modeling to detect wildlife in Somaliland. Ecosphere 9(3), e02134.
Evans, H. C. (1982) Entomogenous fungi in tropical forest ecosystems: an appraisal. Ecological Entomology 7(1), 47–60.
Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4), 783–791.
Freemantle, N. (2000) StatsDirect—statistical software for medical research in the 21st century. Bmj 321(7275), 1536.
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2), 113–118.
Gauch, H. G. & Wentworth, T. R. (1976) Canonical correlation analysis as an ordination technique. Vegetatio 33(1), 17–22.
Gebremariam, A., Chekol, Y. & Assefa, F. (2021) Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide. Heliyon 7(5), e07091.
Gee, G. W., & Bauder, J. W. (1986) Particle-size Analysis. In A. Klute (ed.) Methods of Soil Analysis Part 1. Soil Science Society of America Book Series, 5. Physical and Mineralogical Methods, Agronomy Monograph No. 9, pp. 383-411. 2nd Edition, American Society of Agronomy/Soil Science Society of America, Madison, WI.
Geydan, T.D., Debets, A.J., Verkley, G.J. & van Diepeningen, A.D. (2012) Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Molecular Ecology 21(11), 2816-2828.
Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3), 307–321.
Gulsar Banu, J., Subahasan, K. & Iyer, R. (2004) Occurrence and distribution of entomopathogenic nematodes in white grub endemic areas of Kerala. Journal of Plant Crops 32, 333–334.
Hagstrum, D. W., Phillips, T. W. & Cuperus, G. (2012) Stored Product Protection. Kansas State University, Manhattan, KS. KSRE Publ.
Hassan, F. R., Ghaffar, N. M., Assaf, L. H. & Abdullah, S. K. (2021) Pathogenicity of endogenous isolate of Paramyrothecium (=Myrothecium) roridum (Tode) L. Lombard & Crous against the squash beetle Epilachna chrysomelina (F.). Journal of Plant Protection Research 61(1), 110–116.
Herrero, N., Dueñas, E., Quesada-Moraga, E. & Zabalgogeazcoa, I. (2012) Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology 78(24), 8523–8530.
Houbraken, J., Frisvad, J.C. & Samson, R.A. (2010) Sex in Penicillium series roqueforti. IMA fungus 1(2), 171-180.
Hu, X., Xiao, G., Zheng, P., Shang, Y., Su, Y., Zhang, X., Liu, X., Zhan, S., Leger, R. J. S. & Wang, C. (2014) Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proceedings of the National Academy of Sciences 111(47), 16796–16801.
Humber, R. A. (1997) Fungi preservation of cultures. In Lacey, L (ed) Manual of Techniques in Insect Pathology, pp. 269–280. Academic Press, UK.
Inglis, D. G., Goette, M. S., Butt, T. M. & Strasser, H. (2001) Use of Hyphomycetous fungi for managing isect pests. In Butt, T. M., Jackson, C. and Magan, N. (eds) Fungi as Biocontrol Agents, pp.23-69.CAB International, Wallingford.
Inglis, G. D., Ivie, T. J., Duke, G. M. & Goettel, M. S. (2000) Influence of rain and conidial formulation on persistence of Beauveria bassiana on potato leaves and Colorado potato beetle larvae. Biological Control 18(1), 55–64.
Jaronski, S. T. (2010). Ecological factors in the inundative use of fungal entomopathogens. BioControl 55(1), 159–185.
Kalvnadi, E., Mirmoayedi, A., Alizadeh, M. & Pourian, H.-R. (2018) Sub-lethal concentrations of the entomopathogenic fungus, Beauveria bassiana increase fitness costs of Helicoverpa armigera (Lepidoptera: Noctuidae) offspring. Journal of Invertebrate Pathology 158, 32–42.
Kang, J. K., Pittendrigh, B. R. & Onstad, D. W. (2013) Insect resistance management for stored product pests: a case study of cowpea weevil (Coleoptera: Bruchidae). Journal of Economic Entomology 106(6), 2473–2490.
Kaur, G., & Padmaja, V. (2008a) Evaluation of Beauveria bassiana isolates for virulence against Spodoptera litura (Fab.) (Lepidoptera : Noctuidae) and their characterization by RAPD-PCR. Journal of Microbiology 2, 299–307.
Kaur, G. & Padmaja, V. (2008b) Evaluation of Beauveria bassiana isolates for virulence against Spodoptera litura (Fab.)(Lepidoptera: Noctuidae) and their characterization by RAPD-PCR. African Journal of Microbiology Research 2(11), 299–307.
Keller, S., Zimmermann, G., Wilding, N., Collins, N. M., Hammond, P. M. & Webber, J. F. (1989). Mycopathogens of soil insects. In Wilding, N., Collins, N.M., Hammond, P.M.and Webber, J.F. (eds), Insect-Fungus Interactions, pp. 239-270. Academic Press, London.
Khoobdel, M., Pourian, H.-R. & Alizadeh, M. (2019) Bio-efficacy of the indigenous entomopathogenic fungus, Beauveria bassiana in conjunction with desiccant dust to control of coleopteran stored product pests. Journal of Invertebrate Pathology 168, 107254.
Kim, J. C., Lee, M. R., Kim, S., Lee, S. J., Park, S. E., Nai, Y. S., Lee, G. S., Shin, T. Y. & Kim, J. S. (2018) Tenebrio molitor-mediated entomopathogenic fungal library construction for pest management. Journal of Asia-Pacific Entomology 21(1), 196–204.
Kurtuluş, A., Pehlivan, S., Achiri, T. D. & Atakan, E. (2020) Influence of different diets on some biological parameters of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research 85, 101554.
Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M. & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology 132, 1–41.
Lawrence, D.P., Gannibal, P.B., Peever, T.L. & Pryor, B.M. (2013) The sections of Alternaria: formalizing species-group concepts. Mycologia 105(3), 530-546.
LeOra Software. (2018) PoloMix, LeOra Software (2.2). LeOra Software Petaluma. http://www.leorasoftware.com
Loeppert, R.H., and D.L. Suarez. 1996. Carbonate and gypsum. In D.L. Sparks et al. (eds.). Methods of Soil Analysis. Part 3. 3rd ed. Chemical and Microbiological Properties. pp. 437-474, ASA and SSSA, Madison, WI, USA.
Lombard, L., Houbraken, J., Decock, C., Samson, R.A., Meijer, M., Réblová, M., Groenewald, J.Z. & Crous, P.W. (2016) Generic hyper-diversity in Stachybotriaceae. Persoonia-Molecular Phylogeny and Evolution of Fungi 36(1), 156-246
Lord, J. C. (2001) Response of the wasp Cephalonomia tarsalis (Hymenoptera: Bethylidae) to Beauveria bassiana (Hyphomycetes: Moniliales) as free conidia or infection in its host, the sawtoothed grain beetle, Oryzaephilus surinamensis (Coleoptera: Silvanidae). Biological Control 21(3), 300–304.
MacGregor-Fors, I. & Payton, M. E. (2013) Contrasting diversity values: statistical inferences based on overlapping confidence intervals. PLoS One 8(2), e56794.
Mantzoukas, S., Lagogiannis, I., Ntoukas, A., Eliopoulos, P. A., Kouretas, D., Karpouzas, D. G. & Poulas, K. (2020) Trapping entomopathogenic fungi from vine Terroir soil samples with insect baits for controlling serious pests. Applied Sciences 10(10), 3539.
Meyling, N. V. & Eilenberg, J. (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biological Control 43(2), 145–155.
Meyling, N. V., Lübeck, M., Buckley, E. P., Eilenberg, J. & Rehner, S. A. (2009) Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Molecular Ecology 18(6), 1282–1293.
Moya, P., Cipollone, J. & Sisterna, M. (2020) The Fungal genus Chaetomium and its agricultural applications. In Mérillon, J.M. and Ramawat, K.G. (eds) Plant Defence: Biological Control Progress in Biological Control, pp.289-308.Cham, CH: Springer International Publishing.
NouriAiin, M., Askary, H., Imani, S. & Zare, R. (2014) Isolation and characterization of entomopathogenic fungi from hibernating sites of sunn pest (Eurygaster integriceps) on Ilam mountains, Iran. International Journal of Current Microbiology and Applied Science 3, 314-325.
Parsa, A. & Maleki, Z. (1978) Flora of Iran. vol. 1. Ministry of Science & Higher Education of Iran.
Pielou, E. C. (1975). Ecological Diversity, Wiley & Sons. New York.
Pourian, H. R. & Alizadeh, M. (2021) Diatomaceous earth low-lethal dose effects on the fitness of entomopathogenic fungus, Beauveria bassiana, against two coleopteran stored product pests. Journal of Stored Products Research 94, 101878.
Pourian, H. R. H. R., Ezzati-Tabrizi, R. & Talaei-Hassanloui, R. (2008) An improved cage system for the bioassay of Metarhizium anisopliae on Thrips tabaci (Thysanoptera: Thripidae). Biocontrol Science and Technology 18(7), 745–752.
Püntener, W. (1981) Manual for Field Trials in Plant Protection, second ed. Agricultural Division, Ciba-Geigy Limited. Ciba-Geigy.
Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A., & Santiago-Álvarez, C. (2007a) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research 111(8), 947–966.
Quesada-Moraga, E., Navas-Cortés, J. A., Maranhao, E. A. A., Ortiz-Urquiza, A., & Santiago-Álvarez, C. (2007b) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycological Research 111(8), 947–966.
Rehner, S.A., Minnis, A.M., Sung, G.H., Luangsa-ard, J.J., Devotto, L. & Humber, R.A. (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103(5), 1055-1073.
Schleif, R. (2012) Genetics and molecular biology. Current opinion in lipidology 23, 2-35.
Shang, Y., Feng, P. & Wang, C. (2015) Fungi That Infect Insects: Altering Host Behavior and Beyond. PLoS Pathogens 11(8), 1–6
Sharma, L., Gonçalves, F., Oliveira, I., Torres, L. & Marques, G. (2018) Insect-associated fungi from naturally mycosed vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biocontrol Science and Technology 28(2), 122–141.
Shi, L.-L., Mortimer, P. E., Slik, J. W. F., Zou, X.-M., Xu, J., Feng, W.-T. & Qiao, L. (2014) Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Diversity 64(1), 305–315.
Shin, T. Y., Lee, W. W., Ko, S. H., Choi, J. B., Bae, S. M., Choi, J. Y., Lee, K. S., Je, Y. H., Jin, B. R. & Woo, S. D. (2013) Distribution and characterisation of entomopathogenic fungi from Korean soils. Biocontrol Science and Technology 23(3), 288–304.
Singh, S. R. & Emden, H. F. Van. (1979) Insect pests of grain legumes. Annual Review of Entomology 24(1), 255–278.
Sommermann, L., Geistlinger, J., Wibberg, D., Deubel, A., Zwanzig, J., Babin, D., Schlüter, A. & Schellenberg, I. (2018) Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing. PLoS ONE 13 (4), e0195345.
Sookar, P., Bhagwant, S. & Awuor Ouna, E. (2008) Isolation of entomopathogenic fungi from the soil and their pathogenicity to two fruit fly species (Diptera: Tephritidae). Journal of Applied Entomology 132(9‐10), 778–788.
Sun, B.-D. & Liu, X. Z. (2008) Occurrence and diversity of insect-associated fungi in natural soils in China. Applied Soil Ecology 39(1), 100–108.
Sun, Y.P. P. (1950) Toxicity Index-an improved Method of comparing the relative 378 Toxicity of Insecticides. Journal of Economic Entomology 43(1), 45–53.
Ter Braak, C. J. F. & Smilauer, P. (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). www.canoco.com.
Thomas, G. W. (1996) Soil pH and soil acidity. In Sparks, D.L. (ed.) Methods of Soil Analysis. Part 3. Chemical methods, pp. 475–490. Soil Science Society of America: Madison, WI.
Uma Devi, K., Padmavathi, J., Uma Maheswara Rao, C., Khan, A. A. P. & Mohan, M. C. (2008) A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Science and Technology 18(10), 975–989.
Visagie, C.M., Hirooka, Y., Tanney, J.B., Whitfield, E., Mwange, K., Meijer, M., Amend, A.S., Seifert, K.A. & Samson, R.A. (2014) Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Studies in Mycology 78, 63-139.
Vu, D., Groenewald, M., de Vries, M., Gehrmann, T., Stielow, B., Eberhardt, U., Al-Hatmi, A., Groenewald, J. Z., Cardinali, G., Houbraken, J., Boekhout, T., Crous, P. W., Robert, V. & Verkley, G. J. M. (2019). Large-scale generation and analysis of flamentous fungal DNA barcodes boosts coverage for kingdom Fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92, 135–154.
Wakil, W., Ghazanfar, M., Riasat, T., Jung Kwon, Y., Qayyum, M. & Yasin, M. (2013) Occurrence and diversity of entomopathogenic fungi in cultivated and uncultivated soils in Pakistan. Entomological Research, 43.
Walkley, A. & Black, I. A. (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1), 29–38.
White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J. (eds.), PCR Protocols:A Guide to Methods and Applications, pp.315-322. Academic Press, New York.
Willis, K. J. (2018) State of the world’s fungi 2018. In Willis, K. J. (ed.), State of the World's Fungi. pp.18-23, Royal Botanic Gardens, Kew.
Zimmermann, G. (1986) The ‘Galleria bait method’for detection of entomopathogenic fungi in soil. Journal of Applied Entomology 102(1‐5), 213–215.
Zimmermann, G. (2007a) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17(6), 553–596.
Zimmermann, G. (2007b) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology 17(9), 879–920.