ویژگی های زیستی، واکنش تابعی و عددی کنه شکارگر Amblyseius swirskii با تغذیه از سفیدبالک Bemisia tabaci

نوع مقاله : مقاله کامل، انگلیسی

نویسندگان

گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

10.61186/jesi.43.2.2

چکیده

کنه Amblyseius swirskii Athias-Henriot توجهات اساسی را به عنوان یک عامل کنترل بیولوژیک به خود جلب کرده است. تاریخچه زندگی و واکنش تابعی و عددی A. swirskii با تغذیه از Bemisia tabaci (Gennadius) در شرایط آزمایشگاهی (2±25 درجه سلسیوس، 5±60% رطوبت نسبی، 16 ساعت روشنایی: 8 ساعت تاریکی) مطالعه شد. دوره رشدی مراحل نابالغ، بقا و زادآوری A. swirskii بوسیله قراردادن تخم­های تازه کنه روی برش­های گرد از برگ خیار (به قطر 5/2 سانتی­متر) و آلوده به مراحل مختلف نابالغ B. tabaci ارزیابی شد. نتایج نشان داد که کنه شکارگر قادر به تغذیه و تکمیل رشدش روی تخم و پوره­های سن یک B. tabaci بود. کل دوره رشدی قبل از بلوغ ماده  A. swirskiiبا تغذیه از تخم و پوره­های سن یک B. tabaci به ترتیب 62/5 و 12/5 روز بود. نسبت جنسی (درصد ماده) A. swirskii با تغذیه از رژیم­های غذایی مذکور به ترتیب 70 و 72% بود. با تغذیه از رژیم­های غذایی مذکور، طول عمر ماده بالغ  A. swirskiiبه ترتیب 27/25 و 97/26 روز و زادآوری کل 20/47 و 70/41 تخم بود. نرخ ذاتی افزایش جمعیت (rm) در A. swirskii با تغذیه از رژیم­های غذایی مذکور به ترتیب 2040/0 و 1863/0 بر روز بود. با استفاده از رگرسیون لجستیک، واکنش تابعی کنه A. swirski با تغذیه از تراکم­های مختلف (5، 10، 20، 30، 45 و 60) تخم B. tabaci از نوع دوم تعیین شد. بیشترین میانگین تعداد طعمه مصرف شده بوسیله یک عدد کنه ماده A. swirski در تراکم­های 60 و 45 طعمه به ترتیب 50/38 و 70/34 تخم و بدون تفاوت معنی دار ثبت شد. قدرت جستجو (a) و زمان دستیابی (Th) کنه­های ماده بر اساس رگرسیون غیرخطی حداقل مربعات، 1056/0 بر ساعت و 3534/0 ساعت تخمین زده شد. بیشترین نرخ شکارگری (T/Th) کنه­های ماده 91/67 تخم در روز بود. با افزایش تراکم طعمه،  واکنش عددی (تعداد تخم­های گذاشته شده) کنه معنی داری نبود. در مجموع، نتایج مطالعه حاضر نشان داد که کنه A. swirski پتانسیل خوبی برای کنترل B. tabaci دارد. بنابراین پژوهش­های بیشتری در این زمینه در گلخانه و مزرعه مورد نیاز است.

چکیده تصویری

ویژگی های زیستی، واکنش تابعی و عددی کنه شکارگر Amblyseius swirskii  با تغذیه از سفیدبالک  Bemisia tabaci

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biological characteristics, functional and numerical responses of the predatory mite Amblyseius swirskii feeding on cotton whitefly, Bemisia tabaci

نویسندگان [English]

  • Rasool Golshan
  • Parviz Shishehbor
  • Mehdi Esfandiari
Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Amblyseius swirskii Athias-Henriot has attracted substantial attention as a biological control agent. The life history traits, and functional and numerical responses of A. swirskii fed on Bemisia tabaci (Gennadius) was studied under laboratory conditions (25±1°C, 60±5% RH and 16 L: 8D). Predatory mite was able to feed and complete its development on both B. tabaci eggs and 1st instar nymphs. Total preadult developmental period of female A. swirskii fed on eggs and 1st instar nymphs of B. tabaci were 5.62 and 5.12 days, respectively. Sex ratio (female percentage) of A. swirskii feeding on above diets were 70 and 72 %, respectively. Female longevity of A. swirskii fed on above mentioned diets were 25.27 and 26.97 days, respectively, and total fecundity were 47.20 and 41.70 eggs, respectively. Intrinsic rate of increase (rm) of A. swirskii fed on above mentioned diets were 0.2040 and 0.1863 day-1, respectively. A type II functional response for feeding A. swirski on different densities (5, 10, 20, 30, 45, and 60) of B. tabaci eggs was determined. The highest mean number of preys fed by a single female A. swirskii were 38.50 and 34.70 eggs which were recorded at densities of 60 and 45 preys, respectively, with no significant difference. Searching efficiency (a) and handling times (Th) of the female mites were estimated as 0.1056 h-1 and 0.3534 h, according to nonlinear least-square regression. The maximum theoretical predations (T/Th) for female mites was 67.91 eggs/day. The reproductive numerical response, in terms of eggs laid, showed no significant difference with increasing prey density. There was also no significant difference between longevity of female mite in different densities of B. tabaci eggs. Overall, the results of the present study indicated that A. swirskii has a good potential to control B. tabaci. Therefore, further glasshouse and field research is warranted.

کلیدواژه‌ها [English]

  • attack rate
  • fecundity
  • handling time
  • life table
  • prey density
Amiri-Jami, A. R. & Sadeghi-Namaghi, H. (2014) Responses of Episyrphus balteatus DeGeer (Diptera: Syrphidae) in relation to prey density and predator size. Journal of Asia-Pacific Entomology 17, 207–211. https://doi.org/10.1016/j.aspen.2014.01.007
Asgari, F., Sarraf Moeyeri, H. R., Kavousi, A. Enkegaard, A. & Chi, H. (2020) Demography and mass rearing of Amblyseius swirskii (Acari: Phytoseiidae) fed on two species of stored-product mites and their mixture. Journal of Economic Entomology 113, 2604-2612. https://doi.org/10.1093/jee/toaa187
Barbosa, M. F. C., Polettib, M. & Poletti, E. C. (2019) Functional response of Amblyseius tamatavensis Blommers (Mesostigmata: Phytoseiidae) to eggs of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) on five host plants. Biological control 138, 104030. https://doi.org/10.1016/j.biocontrol.2019.104030
Bass, C., Denholm, I., Williamson, M. S. & Nauen, R. (2015) The global status of insect resistance to neonicotinoid insecticides. Pesticide, Biochemistry and Physiology 121, 78-87. https://doi.org/10.1016/j.pestbp.2015.04.004
Bazgir, F., Shakarami, J. & Jafari, S. H. (2018) Life table and predation rateof Amblyseius swirskii (Acari: Phytoseiidae) fed on Eotetranychus frosti (Tetranychidae) and Cenopalpus irani (Tenuipalpidae). Systematic & Applied Acarology 23, 1614-1626. https://doi.org/10.11158/saa.23.8.11
Behdad, A. (1983) Crop plant pests of Iran. Isfahan Neshat Printing House. 387 p.
Bink-Moenen, R. M. (1983) Revision of the African whiteflies (Aleyrodidae), mainly based on collection from Tchad. Monografleen van de Nederlandse Entomologische Verenging 10, 1-211.
Birch, L. C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 15- 26.
Butler, G. D., Hennerberry, T. G. & Hutchison, W. D. (1989) Biology, sampling and population dynamics of Bemisia tabaci. In: Rusell, G. R. E., Biology and population dynamics of invertebrate crop pests. Intercept Ltd. Andover Hampshire. pp. 83-111.
Byrne, D. N. & Bellows, T. S., Jr. (1991) Whitefly biology. Annual Review of Entomology 36, 431-451. https://doi.org/10.1146/annurev.en.36.010191.002243
Cahill, M., Byrne, F. J., Gorman, K., Denholm, I. & Devonshire, A. L. (1995) Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research 85, 181-187. https://doi.org/10.1017/S0007485300034258
Cahill, M., Byrne, F. J., Gorman, K., Denholm, I. & Devonshire, A. L. (1996) Baseline determination and detection of resistance to imidacloprid in Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research 86, 343- 349. https://doi.org/10.1017/S000748530003491X
Calvo, F. J., Blockmans, K. & Belda, J. E. (2011) Control of Bemisia tabaci and Frankliniella occidentalis in cucumber by Amblyseius swirskii. BioControl 56, 185-192. https://doi.org/10.1007/s10526-010-9319-5
Calvo, F. J., Knapp, M., van Houten, Y. M., Hoogerbrugge, H. & Belda J. E. (2015) Amblyseius swirskii: What made this predatory mite such a successful biocontrol agent? Experimental and Applied Acarology 65, 419–433. https://doi.org/10.1007/s10493-014-9873-0
Castle, S. J. & Prabhaker, N. (2013) Monitoring changes in Bemisia tabaci (Hemiptera: Aleyrodidae) susceptibility to neonicotinoid insecticides in Arizona and California. Journal of Economic Entomology 106, 1404-14013. https://doi.org/10.1603/EC12322
Chi, H. (1988) Life-table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology 17, 26–34. https://doi.org/10.1093/ee/17.1.26
Chi, H. (2022) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. National Chung Hsing University, Taichung, Taiwan. Available from: http://140.120.197.173/ecology/Download/Twosex-MSChart.zip (accessed 1 June 2022).
Chi, H. & Liu, H. (1985) Two new methods for the study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica 24, 225–240.
Cavalcante, A. C. C., Burges, L. R., Lourence, A. L. & de Moraes, G. J.  (2015) Potential of two populations of Amblyseius swirskii (Acari: Phytoseiidae) for the control of Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) in Brazil. Experimental and Applied Acarology 25, 271-291. https://doi.org/10.1007/s10493-015-9964-6
Croft, B. A. (1990) Arthropod biological control agents and pesticides. Wily, New York. 723 p.
Fathipour, Y., Karimi, M., Farazmand, A. & Talebi, A. A. (2017) Age-specific functional response and predation rate of Amblyseius swirskii (Phytoseiidae) on two-spotted spider mite. Systematic and Applied Acarology 22, 159-170. https://doi.org/10.11158/saa.22.2.1
Fekrat, L. (2002) Life history and life tables of the sweet potato whitefly, Bemisia tabaci (Gennadius) on three various plants of solanaceae family under laboratory conditions. Master of Sciece Thesis. Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Fishpool, L. D. C. & Burban, C. (1994) Bemisia tabaci: the whitefly vector of African cassava Mosaic virus. Tropical Science 34, 55-72.
Fouly, A. H., Al-Deghairi, M. A. & Abdel Baky, N. F. (2011) Biological aspects and life tables of Typhlodromips swirskii (Acari: Phytoseiidae) fed Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Entomology 8 (1), 56- 62. https://doi.org/10.3923/je.2011.52.62
Gerling, D. (1990a) Whiteflies: their bionomics, pest status and management. Intercept Ltd. UK. 348 p.
Gerling, D. (1990b) Natural enemies of whiteflies: predators and parasitoids. In: Gerling, D. (Ed). Whiteflies: their bionomics, pest status and management. Intercept Ltd. UK. pp. 147-185.
Gerling, D., Alomar, O. & Arno, J. (2001) Biological control of Bemisia tabaci using predators and parasitoids. Crop Protection 20, 779-799. https://doi.org/10.1016/S0261-2194(01)00111-9
Gerson, U., Smiley, R. L. & Ochoa, R. (2003) Mites (Acari) for pest control. Blackwell Science. 539 p.
Gerling, D. & Mayer, R. T. (Eds). (1996) Bemisia 1995: Taxonomy, biology, damage, control and management. Intercept Ltd. UK. 702 p.
Gerson, U., Smiley, R. L. & Ochoa, R. (2003) Mites (Acari) for pest control. Blackwell Science, 539 p.                                                                                                                        
Goleva, I. & Zebit, W. (2013) Suitability of different pollen as alternative Food for the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Journal of Acarology 61, 259-283. https://doi.org/10.1007/s10493-013-9700-z
Habibi, J. (1975) Investigation of cotton honeydew and methods of combating it. Plant Pests and Diseases 38, 13-36.
Hassan, S. A. (1982) Relative tolerance of three different strains of the predatory mite Phytoseiulus persimilis A.H. (Acari: Phytoseiidae) to 11 pesticides used on glasshouse crops. Journal of Applied Entomology 93, 55-63. https://doi.org/10.1111/j.1439-0418.1982.tb03570.x
Heydari, S., Allahyari, H. & Zahedi Golpayegani, A. (2016) Prey preference and switching behavior of Amblyseius swirskii (Acari: Phytoseiidae) on greenhouse whitefly and two-spotted spider mite. Iranian Journal of Plant Protection Science 47(1), 139-150. https://doi.org/10.22059/ijpps.2016.59297
Juliano, S. A. (2001) Nonlinear curve fitting: predation and functional response curve. In: Scheiner, S. M. and Gurevitch, J. (Eds.). Design and analysis of ecological experiments. Oxford University Press, New York. pp. 178-196.
Khanjani, M. (2004) Pests of Iranian crops (insects and mites). Bu-Ali Sina University Publications. 719 p.
McMurtry, J. A., De Moraes, G. D. & Sourassou, N. F. (2013) Revision of the lifestyles of phytoseiid mites (Acari; Phytoseiidae) and implications for biological control strategies. Systematics & Applied Acarology 18, 297-230. https://doi.org/10.11158/saa.18.4.1
Metwally, A. M., Abou-El-Naga, M. M., Taha, H. A. & Hoda, F. M. (1984) Studies on feeding, reproduction and development of Amblyseius swirskii (A. H.) (Acarina: Phytoseiidae). Agricultural Research Review 62, 323-326.
Momen, F. M., Hussein, H. & Reda, A. S. (2013) Intera-guild vs extraguild prey: effect on development, predation and preference of Typhlodromus negevi Swirskii and Amitai and Typhlodromips swirskii (Athias-henriot) (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica 48(1), 95-106. https://doi.org/10.1556/aphyt.48.2013.1.9
Monsef, A. & Kashkouli, A. (1987) Cotton honeydew in Fars province and methods of combating it. Plant Pests and Diseases 46, 66-76.
Mound, L. A. & Hasley, S. H. (1978) Whitefly of the world: a systematic catalogue of the Aleyrodidae (Homoptera) with host plant and natural enemy data. Wiley, New York, 340 pp.
Nawar, M. & Imam, I. I. (2019) The effect of different preys on behavior of the predatory mite Amblyseius swirskii. Egyptian Journal of Desert Research 69, 47-57. https://doi.org/10.21608/ejdr.2020.18475.1063
Nomikou, M., Janssen, A., Schraag, R. & Sabelis, M. W. (2001) Phytoseiid predators as potential biological control agents for Bemisia tabaci. Experimental and Applied Acarology 25, 271-291. https://doi.org/10.1023/A:1017976725685
Park, H. H., Shipp, L. & Buitenhuis, R. (2010) Predation, development, and oviposition by the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) on tomato russet mite (acari: Eriophyidae). Journal of Economic Entomology 103, 563-569. https://doi.org/10.1603/EC09161
Perring, T. M. & Lackey, L. J. (1989) Temperature and humidity effects on mortality and preadult development of two Phytoseiulus persimilis strains (Acari: Phytoseiidae). International Journal of Acarology 15, 47-52. https://doi.org/10.1080/01647958908683821
Polston, J. E., De Baro, P. & Boykin, L. M. (2014) Transmission specificities of plant viruses with the newly identified species of the Bemisia tabaci species complex. Pest Management Science 70, 1547-1552. https://doi.org/10.1002/ps.3738
Prabhaker, N., Coudriet, D. L. & Meyerdirk, D. E. (1985) Insecticide resistance in the sweet potato whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology 78, 387-409. https://doi.org/10.1093/jee/78.4.748
Rahmani Piyani, A., Shishehbor, P., Kocheili, F. & Riddick, E. W. (2021) Comparison of natural prey Tetranychus turkestani, date palm pollen, and bee pollen diets on development, reproduction, and life table parameters of the predator Amblyseius swirskii. Acarologia 61, 890-900. https://doi.org/10.24349/G9ed-QB9h
Riahi, E., Fathipour, Y., Talebi, A. A. & Mehrabadi., M. (2017) Linking life table and consumption rate of Amblyseius swirskii (Acari: Phytoseiidae) in presence and absence of different pollens. Annals of the Entomological Society of America 110, 244–253. https://doi.org/10.1093/aesa/saw091
Rogers, D. (1972) Random search and insect population models. Journal Animal Ecology 41, 369–383. https://doi.org/10.2307/3474
Russell, L. M. (1975) Synonyms of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Bulletin of Brooklin Entomological Society 52, 122-123.
Salvatian, A. (1988) Cotton honeydew and ways to fight it. Publications of the Agricultural Promotion Organization. 52 p.
SAS Institute. (2012) Version 9.1, Qualification Tools user Guide, NC, USA: Cary.
Seiedy, M., Soleymani, S. & Hakimitabar, M. (2017) Development and reproduction of the predatory mite Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) on Tetranychus urticae Koch (Acari: Tetranychidae) and Bemisia tabaci Gennadius (Heteroptera: Aleyrodidae). International Journal of Acarology 43(2), 160-164. https://doi.org/10.1080/01647954.2016.1248486
Smith, H. A., Nagle, C. A., McVean, C. A. & McKenzie, C. L. (2016) Susceptibility of Bemisia tabaci MEAM1 (Hemiptera: Aleyrodidae) to imadaclopride, thiametoxam, dinotefuran, and flupyradifurone in south Florida. Insects 7, 57. https://doi.org/10.3390/insects7040057
Smith, H. A. (2017) Surveying the silverleaf whitefly, Bemisia tabaci, in tomato for biotype. Tomato research report 2016- 2017. University of Florida, Institute of Food and Agricultural Sciences, Florida Agricultural Experiment station, Gainesville, Fl.
Thompson, W. M. O. (2011) Introduction: Whiteflies, geminiviruses and recent events. In Thompson, W. M. O. (ed.) The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) interaction with geminivirus-infected host plants. Springer, Berlin, Germany, p. 1-13.
Tsai, J. H. & Wang, K. (1996) Development and reproduction of Bemisia tabaci (Homoptera: Aleyrodidae) on five host plants. Environmental Entomology 25, 810-816. https://doi.org/10.1093/ee/25.4.810
Wei, M. F., Chi, H., Guo, Y. F., Li, X. W., Zhao, L. L. & Ma, R. Y. (2020) Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri and P. communis (Rosales: Rosaceae) pears with estimations of confidence intervals of specific life table statistics. Journal of Economic Entomology 113(5), 2343-2353. https://doi.org/10.1093/jee/toaa149
Zandi Sohani, N. Shishehbor, P. & Kocheili, F. (2007) Thermal effects in the biology and life tables of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Pakistan Journal of Biological Sciences 10, 4057-4062. https://doi.org/10.3923/pjbs.2007.4057.4062