سمیت نانوذرات اکسید آهن سبز سنتز شده بر Trialeurodes vaporariorum و اثرات آنها بر آنزیم های آنتی اکسیدانی و پراکسیداسیون لیپیدی

نوع مقاله : مقاله کامل، انگلیسی

نویسندگان

1 Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol, Sisan and Baluchestan, Iran

2 Department of Food Science, Faculty of Agriculture, University of Zabol, Zabol, Sisan and Baluchestan, Iran

10.61186/jesi.43.2.6

چکیده

در این مطالعه، اثرات کشندگی غلظت‌های نانوذرات اکسیدآهن (FeONPs) سنتز شده از گیاهان (یونجه، ریحان، اکالیپتوس، دارچین) بر مرگ‌ومیر، فعالیت آنزیم‌های آنتی‌اکسیدانی (سوپراکسید دیسموتاز (SOD)، کاتالاز (CAT) گلوتاتیون پراکسیداز (GPx)، گلوتاتیون S-ترانسفرازها (GST) و پراکسیداسیون لیپیدی (LPO) برای ارائه روشی موثر و ارزان جهت کنترل خسارات اقتصادی ناشی از Trialeurodes vaporariorum بررسی شد. خصوصیات FeONPهای آماده شده با عصاره­های گیاهی توسط اسپکتروفتومتر مرئی- فرابنفش (UV-Vis)، طیف سنجی مادون قرمز تبدیل فوریه (FTIR) و میکروسکوپ الکترونی روبشی نشر میدانی (FESEM) برای بررسی اندازه، ترکیب عنصری و شکل شناسی انجام شد. نتایج UV-Vis از FeONP سنتز شده گیاهی با نشان دادن پیک در 256 نانومتر، سنتز نانوذرات را تایید کرد. FTIR پیک­های جذب قوی را در 3420، 3446، 3421 و 3446cm−1  (گروه هیدروکسیل)، 2925 و 2926 cm−1  (گروه C-H)، 1618، 1636، 1647، 1716cm−1  (گروه C=O) و 1030، 1034، 1044 و 1048 cm−1  (گروه C-O) شناسایی کرد. آزمایش‌های زیست سنجی با حشرات بالغ T.vaporariorum در قفس‌های برگیتیمارشده با غلظت‌های مختلف FeONPs انجام شد. نرم افزار نسخه SPSS 21 (IBM, New York, US) با فاصله اطمینان (CI) 95٪ و تجزیه و تحلیل Probit برای تعیین غلظت کشنده (LC10، LC25، LC30 و LC50) FeONPها استفاده شد. نتایج نشان داد که FeONPهای ریحان، یونجه، اکالیپتوس و دارچین به ترتیب در غلظت­های 876/4، 935/16، 584/10 و 948/11 mg L-1 به طور موثر 50 درصد از حشرات بالغ T.vaporariorum را از بین بردند. افزایش قابل توجهی در فعالیت LPO، GST، GPX، CAT و SOD در حشرات بالغی که در معرض غلظت­های کشنده FeONPها قرار داشتند، مشاهده شد. علاوه بر این، یافته‌ها نشان داد که قرار گرفتن در معرض FeONPها، باعث ایجاد استرس اکسیداتیو در حشرات بالغ T.vaporariorum شده و ممکن است طول عمر آنها را در گلخانه‌ کاهش دهد.

چکیده تصویری

سمیت نانوذرات اکسید آهن سبز سنتز شده بر  Trialeurodes vaporariorum و اثرات آنها بر آنزیم های آنتی اکسیدانی و پراکسیداسیون لیپیدی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Toxicities of synthesized green iron oxide nanoparticles on Trialeurodes vaporariorum and their effects on antioxidant enzymes and lipid peroxidation

نویسندگان [English]

  • Najmeh Sahebzadeh 1
  • Tayebeh Haddadi 2
  • Azizollah Mokhtari 1
1 Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol, Sisan and Baluchestan, Iran
2 Department of Food Science, Faculty of Agriculture, University of Zabol, Zabol, Sisan and Baluchestan, Iran
چکیده [English]

In this study, lethal concentrations of iron-oxide nanoparticles (FeONPs) synthesized from plants (alfalfa, basil, eucalyptus, cinnamon) were investigated for their effects on mortality, antioxidant enzyme activities (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferases (GST)) and lipid peroxidation (LPO) to develop an effective and inexpensive method for controlling the economic losses caused by Trialeurodes vaporariorum. The characterization of prepared FeONPs with plant extracts was performed using an ultraviolet-visible spectrophotometer (UV-Vis), Fourier transforms infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) to examine the size, elemental composition, and morphology. The UV-Vis results of the green synthesized FeONP showed a peak at 256 nm, confirming the synthesis of FeONPs. An FTIR detected strong absorption peaks at 3420, 3446, 3421, and 3446 cm−1 (hydroxyl group); 2925 and 2926 cm−1 (C–H group); 1618, 1636, 1647, and 1716 cm−1 (C=O group), at approximately 1030, 1034, 1044, and 1048 cm−1 (C–O group). Bioassay tests have been conducted with adults of T. vaporariorum in plastic leaf cages treated with different concentrations of FeONPs. SPSS 21 software (IBM, New York, US) with a confidence interval (CI) of 95% and Probit analysis was employed to determine lethal concentrations (LC10, LC25, LC30, and LC50) of synthesized FeONPs. The results demonstrated that basil, alfalfa, eucalyptus and cinnamon FeONPs effectively killed 50% of T.vaporariorum adults, at concentrations of 4.876, 16.935, 10.584 and 11.948 mg L-1, respectively. Significant increases in LPO, GST, GPX, CAT, and SOD activities were observed in T.vaporariorum adults exposed to the lethal concentrations of different FeONPs. Moreover, the findings suggested that exposure to FeONPs induced oxidative stress in T. vaporariorum adults and may decline their longevity in greenhouses.

کلیدواژه‌ها [English]

  • Biomarker
  • Enzymatic antioxidants
  • Nanotoxicology
  • Oxidative stress
  • Reactive oxygen species

 © 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License.

Abbott, W.  S. (1925) A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18 (2), 265-267, https://doi.org/10.1093/jee/18.2.265a
Abdelsalam, S. A., Alzahrani, A. M., Elmenshawy, O. M. & Abdel-Moneim, A. M. (2016) Spinosad induces antioxidative response and ultrastructure changes in males of red palm weevil Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae). Journal of Insect Science 16(1), 1-10. http://doi.org/10.1093/jisesa/iew089
Aebi, H. (1984) Catalase in vitro. Methods in Enzymology 105,121-126. http://doi.org/10.1016/S0076-6879(84)05016-3
Ahmad, S. & Pardini, R. S. (1990) Mechanisms for regulating oxygen toxicity in phytophagous insects. Free Radical Biology and Medicine 8(4), 401-413. http://doi.org/10.1016/0891-5849(90)90107-T
Al-Daheri, H. A. & Al-Deeb, M. A. (2012) Mortality and GST enzyme response of saw-toothed grain beetles, Oryzaephilus surinamensis (Coleoptera: Silvanidae) exposed to low insecticide concentrations. Journal of Entomology 9, 396-402. http://doi.org/10.3923/je.2012.396.402
Aslanturk, A., Kalender, S., Uzunhisarcikli, M. & Kalender, Y. (2011) Effects of methidathion on antioxidant enzyme activities and malondialdehyde level in midgut tissues of Lymantria dispar (Lepidoptera) larvae. Journal of the Entomological Research Society 13, 27-38. https://www.entomol.org/journal/index.php/JERS/article/view/318
Bamidele, O., Ajele, J., Kolawole, A. & Oluwafemi, A. (2013) Changes in the tissue antioxidant enzyme activities of palm weevil (Rynchophorous phoenicis) larva by the action of 2, 2-dichlorovinyl dimethyl phospate. African Journal of Biochemistry Research 7, 128-137. http://doi.org/10.5897/AJBR2013.0693
Batish, D. R., Singh, H. P., Kohli, R. K. & Kaur, S. (2008) Eucalyptus essential oil as a natural pesticide. Forest Ecology and Management 256, 2166-2174. https://doi.org/10.1016/j.foreco.2008.08.008
Brodowska, K. M., Brodowska, A. J., Śmigielski, K. & Łodyga-Chruścińska, E. (2016) Antioxidant profile of essential oils and extracts of cinnamon bark (Cinnamomum cassia). European Journal of Biological Research 6(4), 310-316. https://doi.org/10.5281/zenodo.197200
Büyükgüzel, E. (2009) Evidence of oxidative and antioxidative responses by Galleria mellonella larvae to Malathion. Journal of Economic Entomology 102(1), 152-159. http://doi.org/10.1603/029.102.0122
Büyükgüzel, E. (2014) Effects of eicosanoid biosynthesis inhibitors on selected oxidative stress biomarkers in the midgut of Galleria mellonella (Lepidoptera: Pyralidae) Larvae. Journal of Entomological Science 49(2), 144-155. http://doi.org/10.18474/0749-8004-49.2.144
Büyükgüzel, E. & Kalender, Y. (2009) Exposure to streptomycin alters oxidative and antioxidative response in larval midgut tissues of Galleria mellonella. Pesticide Biochemistry and Physiology 94(2-3), 112-118. http://doi.org/10.1016/j.pestbp.2009.04.008
Büyükgüzel, E., Büyükgüzel, K., Snela, M, Erdem, M., Radtke, K., Ziemnicki, K. & Adamski, Z. (2013) Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and ultrastructure of midgut and fat body of Galleria mellonella. Cell Biology and Toxicology 29(2), 117-129. http://doi.org/10.1007/s10565-013-9240-7
Büyükgüzel, E., Hyršl, P. & Büyükgüzel, K. (2010) Eicosanoids mediate hemolymph oxidative and antioxidative response in larvae of Galleria mellonella L. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 156(2), 176-183. http://doi.org/10.1016/j.cbpa.2010.01.020
Cervera, A., Maymó, A. C., Martínoz-Pardo, R. & Garcerá, M. D. (2003) Antioxidant enzymes in Oncopeltus fasciatus (Heteroptera: Lygaeidae) exposed to cadmium. Environmental Entomology 32(4), 705-710. https://doi.org/10.1603/0046-225X-32.4.705
Chang, C. L., Cho, I. K. & Li, Q. X. (2009) Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. Journal of Economic Entomology 102(1), 203-209. http://doi.org/10.1603/029.102.0129
Devatha, C. P., Jagadeesh, K. & Patil, M. (2018) Effect of green synthesized iron nanoparticles by Azardirachta indica in different proportions on antibacterial activity. Environmental Nanotechnology, Monitoring and Management 9, 85-94. http://doi.org/10.1016/j.enmm.2017.11.007
Devatha, C. P., Thalla, A. K. & Katte, S. Y. (2016) Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. Journal of Cleaner Production 139, 1425-1435. http://doi.org/10.1016/j.jclepro.2016.09.019
Doganlar, O. & Doganlar, Z. B. (2015) Responses of antioxidant enzymes and heat shock proteins in drosophila to treatment with a pesticide mixture. Archives of Biological Sciences 67(3), 869-876. http://doi.org/10.2298/ABS141031046D
Dubovskii, I. M., Olifrenko, O. A. & Glupov, V. V. (2005) Level and activities of antioxidants in intestine of larvae Galleria mellonella L. (Lepidoptera, Pyralidae) at peroral infestation by bacteria Bacillus thuringiensis ssp. Galleriae. Journal of Evolutionary Biochemistry and Physiology 41(1), 20-25. http://doi.org/10.1007/s10893-005-0030-6
Dubovskiy, I. M., Martemyanow, V. V., Vorontsova, Y. L., Rantala, M. J., Gryzanova, E. V. & Glupov, V. V. (2008) Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology Part – C 148(1), 1-5. http://doi.org/10.1016/j.cbpc.2008.02.003
Emre, I., Kayis, T., Coskun, M., Dursun, O. & Cogun, H. Y. (2013) Changes in antioxidative enzyme activity, glycogen, lipid, protein, and melondialdehyde content in cadmium treated Galleria mellonella larvae. Annals of the Entomological Society of America 106(3), 371-377. http://doi.org/10.1603/AN12137
Felton, G. W. & Summers, C. B. (1995) Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29(2), 187-197. http://doi.org/10.1002/arch.940290208
Feng, R., Houseman, J. G., Downe, A. E. R. & Arnason, J. T. (1993) Effects of a-terthienyl on the midgut detoxification enzymes of the European corn borer, Ostrinia nubilalis. Journal of Chemical Ecology 19(9), 2047-2054. http://doi.org/10.1007/BF00983807
Gavrilović, A., Ilijin, L., Mrdaković, M., Vlahović, M., Mrkonja, A., Matić, D. & Preić-Mataruga, V. (2017) Effects of benzo[a]pyrene dietary intake to antioxidative enzymes of Lymantria dispar (Lepidoptera: Lymantriidae) larvae from unpolluted and polluted forests. Chemosphere 179, 10-19. http://doi.org/10.1016/j.chemosphere.2017.03.083
Goswami, A., Roy, I., Sengupta, S. & Debnath, N. (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3), 1252-1257. http://doi.org/10.1016/j.tsf.2010.08.079
Gupta, S. C., Siddique, H. R., Saxena, D. K. & Chowdhuri, D. K. (2005) Hazardous effect of organophosphate compound, dichlorvos in transgenic Drosophila melanogaster (hsp70-lacZ): Induction of hsp70, anti-oxidant enzymes and inhibition of acetylcholinesterase. Biochimica et Biophysica Acta 1725(1), 81-92. http://doi.org/10.1016/j.bbagen.2005.04.033
Habig, W. H., Pabst, M. J. & Jakoby, W. B. (1974) Glutathione S-transferases, the first step in mercapturic acid formation. Journal of Biological Chemistry 249(22), 71-75.
Hakkim, F. L., Arivazhagan, G. & Boopathy, R. (2008) Antioxidant property of selected Ocimum species and their secondary metabolite content. Journal of Medicinal Plants Research 2(9), 250-257.
Hegazy, G., De Cock, A. & Degheele, D. (1990) Ultrastructural changes in the cuticle of the greenhouse whitefly Trialeurodes vaporariorum, induced by the insect growth inhibitor, buprofezin. Entomologia Experimentalis et Applicata 57, 299-302. http://doi.org/10.1111/j.1570-7458.1990.tb01443.x
Hemming, J. D. C. & Lindroth, R. (2000) Effects of phenolic glycosides and protein on gypsy moth (Lepidoptera: Lymantriidae) and forest tent caterpillar (Lepidoptera: Lasiocampidae) performance and detoxification activities. Environmental Entomology 29(6), 1108-1115. http://doi.org/10.1603/0046-225X-29.6.1108
Herlekar, M., Barve, S. & Kumar, R. (2014) Plant-mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, Article ID 140614, 1-9. http://doi.org/10.1155/2014/140614
Hyršl, P., Buÿukg̈uzel, E. & B̈uÿukg̈uzel, K. (2007) The effects of boric acid-induced oxidative stress on antioxidant enzymes and survivorship in Galleria mellonella. Archives of Insect Biochemistry and Physiology 66(1), 23-31. http://doi.org/10.1002/arch.20194
Iravani, S. (2011) Green synthesis of metal nanoparticles using plants. Green Chemistry 13, 2638-2650. http://doi.org/10.1039/C1GC15386B
Kafel, A., Nowak, A., Bembenek, J., Szczygieł, J., Nakonieczny, M. & Swiergosz-Kowalewska, R. (2012) The localisation of HSP70 and oxidative stress indices in heads of Spodoptera exigua larvae in a cadmium-exposed population. Ecotoxicology and Environmental Safety 78, 22-27. http://doi.org/10.1016/j.ecoenv.2011.10.024
Kayis, T., Coskun, M. & Emre, I. (2015) Alterations in antioxidant enzyme activity, lipid peroxidation, and ion balance induced by dichlorvos in Galleria mellonella (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 108(4), 570-574. http://doi.org/10.1093/aesa/sav038
Kayis, T., Emre, I. & Coskun, M. (2012) Effects of diazinon on antioxidant enzymes and adult emergence of the parasitoid Pimpla turionellae L. (Hymenoptera: Ichneumonidae). Turkish Journal of Entomology 36(4), 463-471.
Kharissova, O. V., Rasika-Dias, H. V., Kharisov, B.I., Perez, B. O. & Jimenez-Perez, V. M. (2013) The greener synthesis of nanoparticles. Trends in Biotechnology 31(4), 240-248. http://doi.org/10.1016.j.tibtech.2013.01.003
Khooshe-Bast, Z., Sahebzadeh, N., Ghaffari-Moghaddam, M. & Mirshekar, A. (2016) Insecticidal effects of zinc oxide nanoparticles and Beauveria bassiana TS11 on Trialeurodes vaporariorum (Westwood, 1856) (Hemiptera: Aleyrodidae). Acta Agriculturae Slovenica 107(2), 299-309. http://doi.org/10.14720/AAS.2016.107.2.04
Kolawole, A. O. & Kolawole, A. N. (2014) Insecticides and bio-insecticides modulate the glutathione-related antioxidant defense system of cowpea storage bruchid (Callosobruchus maculatus). International Journal of Insect Science 6, 79-88. http://doi.org/10.4137/IJIS.S18029
Krishnan, N. & Kodrik, D. (2006) Antioxidant enzymes in Spodoptera littoralis (Boisduval): Are they enhanced to protect gut tissues during oxidative stress? Journal of Insect Physiology 52(1), 11-20. http://doi.org/10.1016/j.jinsphys.2005.08.009
Li, Z., Shen, H., Jiang, Q. & Ji, B. (1994) A study on the activities of endogenous enzymes of protective system in some insects. Acta entomologica Sinica 37(4), 399-403.
Liang, P., Cui, J. Z., Yang, X. Q. & Gao, X. W. (2007) Effects of host plants on insecticide susceptibility and carboxylesterase activity in Bemisia tabaci biotype B and greenhouse whitefly, Trialeurodes vaporariorum. Pest Management Science 63(4), 365-371. http://doi.org/10.1002/ps.1346
Ling, S. & Zhang, H. (2013) Influences of chlorpyrifos on antioxidant enzyme activities of Nilaparvata lugens. Ecotoxicology and Environmental Safety 98, 187-190. http://doi.org/10.1016/j.ecoenv.2013.08.023
Liu, G., Liu, G., Gao, J., Ai, H. & Chen, X. (2012) Applications and potential toxicity of magnetic iron oxide nanoparticles. Small 9 (9-10), 1533-1545. http://doi.org/10.1002/smll.201201531
Lowry, O. H., Rosebrough, N. J. & Farr, A. L. (1951) Protein measurement with the Folin-phenol reagent. Journal of Biological Chemistry 193(1), 265-275.
Lukasik, I. & Golawska, S. (2007) Activity of Se-independent glutathione peroxidase and glutathione reductase within cereal aphid tissues. Biology Letters 4, 31-39.
Ma, Z., Han, X., Feng, J., Li, G. & Zhang, X. (2008) Effects of Terpinen-4-ol on four metabolic enzymes and polyphenol oxidase (PPO) in Mythimna separta walker. Agricultural Sciences in China 7, 726-730. http://doi.org/10.1016/S1671-2927(08)60107-8
Mittal, A. K., Chisti, Y. & Banerjee, U. C. (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances 31(2), 346-356. http://doi.org/10.1016/j.biotechadv.2013.01.003
Nareshkumar, B., Akbar, S. M., Sharma, H. C., Jayalakshmi, S. K. & Sreeramulu, K. (2017) Imidacloprid impedes mitochondrial function and induces oxidative stress in cotton bollworm, Helicoverpa armigera larvae (Hubner: Noctuidae). Journal of Bioenergetics and Biomembranes 50(1), 21-32. http://doi.org/10.1007/s10863-017-9739-3
Olmedo, R., Herrera, J. M., Lucini, E. I., Zunino, M. P., Pizzolitto, R. P., Dambolena, J. S. & Zygadlo, J. A. (2015) Essential oil of Tagetes filifolia against the flour beetle Tribolium castaneum and its relation to acetylcholinesterase activity and lipid peroxidation. Agriscentia 32(2), 113-121.
Orr, W. C. & Sohal, R. S. (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130. http://doi.org/10.1126/science.8108730
Parisi, C., Vigani, M. & Rodríguez-Cerezo, E. (2015) Agricultural Nanotechnologies: What are the current possibilities?. Nanotoday 10(2), 124-127. http://doi.org/10.1016/j.nanotod.2014.09.009
Rahimi, V., Hajizadeh, J., Zibaee, A. & Jalali Sendi, J. (2018) Effect of Polygonum persicaria (Polygonales: Polygonaceae) extracted agglutinin on life table and antioxidant responses in Helicoverpa armigera (Lepidoptera: Noctuidae) larvae. Journal of Economic Entomology 11(2), 662-671. http://doi.org/10.1093/jee/toy006
Russo, S., Yaber Grass, M. A., Fontana, H. C. & Leonelli, E. (2018) Insecticidal activity of essential oil from Eucalyptus globulus against Aphis nerii (Boyer) and Gynaikothrips ficorum (Marchal). Agriscientia 35, 63-67.
Saif, S., Tahir, A. & Chen, Y. (2016) Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 6(11), 1-26. http://doi.org/10.3390/nano6110209
Sezer, B. & Ozalp, P. (2015) Effect of juvenile hormone analogue, pyriproxyfen on antioxidant enzymes of greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae: Galleriinae) larvae. Pakistan Journal of Zoology 47(3), 665-669.
Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K. & Poinern, G. E. J. (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8, 7278-7308. http://doi.org/10.3390/ma8115377
Shah, S., Dasgupta, S., Chakraborty, M., Vadakkekara, R. & Hajoori, M. (2014) Green synthesis of iron nanoparticles using plant extracts. International Journal of Biological & Pharmaceutical Research 5(6), 549-552.
Shahriari, M., Zibaee, A., Shamakhi, L., Sahebzadeh, N., Naseri, D. & Hoda, H. (2019) Bio-efficacy and physiological effects of Eucalyptus globulus and Allium sativum essential oils against Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Toxin Review 39(4), 1-13. http://doi.org/10.1080/15569543.2018.1554588
Shen, L., Li, B. & Qiao, Y. (2018) Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11(324), 1-29. http://doi.org/10.3390/ma11020324
Singh, B. & Kaur, A. (2018) Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT - Food Science and Technology 87, 93-101. http://doi.org/10.1016/j.lwt.2017.08.077
Singh, S. P. Coronella, J. A., Benes, H., Cochrane, B. J. & Zimniak, P. (2001) Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. European Journal of Biochemistry 268(10), 2912-2923.
Sohn, H. S., Kwon, C. S., Kwon, G. S., Lee, J. B. & Kim, E. (2004) Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicology Letters 151(2), 357-365. http://doi.org/10.1016.j.toxlet.2004.03.004
Valdiglesias, V., Kilic, G., Costa, C., Fernandez-Bertolez, N., Pasaro, E., Teixeira, J. P. & Laffon, B. (2015) Effects of iron oxide nanoparticles: Cytotoxicity, genotoxicity, developmental toxicity, and neurotoxicity. Environmental and Molecular Mutagenesis 56, 125-148. http://doi.org/10.1002/em.21909
Valdiglesias, V., Fernández-Bertóleza, N., Kilic, G., Costad, C., Costad, S., Fragad, S., Bessad, M. J., Pásaroa, E., Teixeirad, J. P. & Laffona, B. (2016) Are iron oxide nanoparticles safe? Current knowledge and future perspectives. Journal of Trace Elements in Medicine and Biology 38, 53-63. http://doi.org/10.1016/j.jtemb.2016.03.017
Virkutyte, J. & Varma, R. S. (2013) Environmentally friendly preparation of metal nanoparticles. In Luque, R., Varma, R.S. (eds). Sustainable Preparation of Metal Nanoparticles: Methods and Applications. RSC Green Chemistry Series, RSC Publishing. Pp.7-33.
Viteri Jumbo, L. O., Haddi, K., Faroni, L. R. D., Heleno, F. F., Pinto, F. G. & Oliveira, E. E. (2018) Toxicity to, oviposition and population growth impairments of Callosobruchus maculatus exposed to clove and cinnamon essential oils. PLoS ONE, 13(11), e0207618. http://doi.org/10.1371/journal.pone.0207618
Vontas, J. G., Small, G. J. & Hemingway, J. (2001) Glutathione S-transferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochemical Journal 357, 65-72.
Wang, T., Jin, X., Chen, Z., Megharaj, M. & Naidu, R. (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Science of the Total Environment 466-467, 210-213. http://doi.org/10.1016/j.scitotenv.2013.07.022
Wang, W., Mo, J., Cheng, J., Zhuang, P. & Tang, Z. (2006) Selection and characterization of spinosad resistance in Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology 84(3), 180-187. http://doi.org/10.1016/j.pestbp.2005.07.002
Wu, H., Liu, J., Zhang, R., Zhang, J., Guo, Y. & Ma, E. (2011a) Biochemical effects of acute phoxim administration on antioxidant system and acetylcholinesterase in Oxya chinensis (Thunberg) (Orthoptera: Acrididae). Pesticide Biochemistry and Physiology 100(10), 23-26. http://doi.org/10.1016/j.pestbp.2011.01.011
Wu, H., Zhang, R., Liu, J., Guo, Y. & Ma, E. (2011b) Effects of Malathion and chlorpyrifos on acetylcholinesterase and antioxidant defense system in Oxya chinensis (Thunberg) (Orthoptera: Acrididae). Chemosphere 83(4), 599-604. http://doi.org/10.1016/j.chemosphere.2010.12.004
Xin, T., Li, X., Cui, X., Gao, S., Liu, X., Zou, Z. & Xia, B. (2017) Alterations in antioxidant enzyme activities and lipid peroxidation induced by diflubenzuron in the carmine spider mite, Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae). International Journal of Acarology 43 (5), 366-373. http://doi.org/10.1080.01647954.2017.1326980
Yasur, J. & Pathipati, U. R. (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124, 92-102. http://doi.org/10.1016/j.chemosphere.2014.11.029
Yu, Q. Y., Fang, S. M., Zuo, W. D., Dai, F. Y., Zhang, Z. & Lu, C. (2011) Effect of organophosphate phoxim exposure on certain oxidative stress biomarkers in the silkworm. Journal of Economic Entomology 104(1), 101-106. http://doi.org/10.1603/EC10260
Zaio, Y., Gatti, G., Ponce, A. A., Saavedra-Larralde, N. A., Martinez, M. J., Zunino, M. P. & Zygadlo, J. A. (2018) Cinnamaldehyde and related phenylpropanoids, natural repellents, and insecticides against Sitophilus zeamais (Motsch.): A chemical structure‐bioactivity relationship. Journal of the Science of Food and Agriculture 98(15), 5822-5831. http://doi.org/10.1002/jsfa.91132