پاسخ Trichogramma brassicae به افزایش دما با تکیه بر روش‌های مولکولی و زیستی

نوع مقاله : مقاله کامل، فارسی

نویسندگان

1 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

2 گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

3 گروه کشاورزی، دانشگاه پیام نور، تهران، ایران

10.61186/jesi.43.3.1

چکیده

افزایش دمای کره زمین یکی از جدیدترین مشکلاتی است که زیست‌بوم زمین را تهدید می‌کند. حشرات به عنوان موجوداتی خونسرد وابستگی زیادی به دمای محیط از خود نشان می‌دهند به گونه‌ای که با افزایش دمای کره زمین در پراکنش، فعالیت و پراسنجه‌های زیستی آن‌ها تغییراتی به وجود می‌آید. زنبور Trichogramma brassicae (Hym.: Trichogrammatidae) یکی از مهم‌ترین عوامل کنترل بیولوژیک در ایران است که برای مهار بسیاری از گونه‌های بالپولکداران مورد استفاده قرار می‌گیرد. در این مطالعه بررسی تغییرات دما روی پراسنجه‌های زیستی و بیان دو ژن شوک حرارتی HSP70 و HSP90 زنبور T. brassicae در شرایط آزمایشگاهی مورد مطالعه قرار گرفت. بدین منظور کلنی اصلی این زنبورها به دو قسمت تقسیم و هر کدام از کلنی‌های جدید به مدت 20 نسل در دو دمای 30 و 33 درجه سلسیوس پرورش داده شدند. بعد از 20 نسل پراسنجه‌هایی مانند درصد پارازیتیسم، نرخ خروج، نسبت جنسی و بیان دو نوع پروتئین دمایی (HSP70 و HSP90) اندازه‌گیری شد. نتایج نشان داد که در دمای 33 درجه سلسیوس میزان بیان پروتئین‌های دماییHSP90 به میزان 45/2 برابر و پروتئین دمایی HSP70 به میزان 9/1 برابر بیان آن در دمای 30 درجه سلسیوس بود که نشان‌دهنده وجود اختلاف معنی‌دار در سطح یک درصد بود. نرخ پارازیتیسم در دماهای 30 و 33 درجه سلسیوس به ترتیب 09/2±5/53 و 14/2±7/40 به ازای 200 تخم بود. درصد خروج زنبورهای بالغ در شاهد و تیمار به ترتیب 37/0 ± 8/96و 83/0± 8/82 بود. نسبت جنسی ماده‌ها به کل جمعیت در دمای 30 و 33 درجه سلسیوس بترتیب 2/1± 3/62 و 8/0± 9/48 ثبت شد. در دمای 33 درجه دوره رشد پیش از بلوغ برابر با 029/0±3/8 روز و در دمای30 درجه سلسیوس 029/0±15/9 روز محاسبه شد. این نتایج نشان می‌دهد افزایش دمای کره زمین می‌تواند اثربخشی دشمنان طبیعی را کاهش دهد که منجر به افزایش احتمال طغیان آفات خواهد شد.

چکیده تصویری

پاسخ  Trichogramma brassicae  به افزایش دما با تکیه بر روش‌های مولکولی و زیستی

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Response of Trichogramma brassicae to increasing temperature using molecular and biological methods

نویسندگان [English]

  • Pouria Abrun 1
  • Hossein Madadi 1
  • Arash Zibaee 2
  • Foad Fatehi 3
1 Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
2 Department of Plant protection, Faculty of Agriculture, Guilan University, Rasht, Iran
3 Department of Agriculture, Payam Noor University, Tehran, Iran
چکیده [English]

The increase in the earth temperature is one of the latest problems threatening the earth ecosystem. Insects as poikilothermic organisms have a high dependence on their environment's temperature so increasing global temperature makes impressions on their distributions, activity, and biological parameters. Trichogramma brassicae (Hymenoptera.: Trichogrammatidae) wasp is one of the most important biological control agents in Iran used to control many species of lepidopterans. In this study, the effect of temperature changes on biological parameters and the expression of two heat shock genes, HSP70 and HSP90, in T. brassicae was studied under laboratory conditions. At first, the main T. brassicae colony was divided into two groups, each of them was separately reared for 20 generations at 30 and 33° C. Then, biological parameters, such as the rate of parasitism, appearance rate, and sex ratio, beside two heat shock gene expressions were assessed. The results indicated that at 33°C, the HSP90 and HSP70 expressions were 2.45 and 1.9 times more than 30°C, respectively, suggesting significant differences at a 99% confidence level. Furthermore, the parasitism rate of T. brassicae at 30 and 33°C were 53.5±2.09 and 40.7±2.14 (from 200 initial eggs), respectively. The obtained results showed that rearing at higher temperature caused to affect the sex ratio, adult appearance rate, and preadult development time. The results of the current study show that increasing global temperature could be result in reducion of the natural enemies efficacy, which will lead to an increase in the probability of pest outbreaks.

کلیدواژه‌ها [English]

  • Heat shock proteins
  • Trichogramma
  • Biological parameters
  • Gene expression

© 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License.

.

Amiri, A., Bandani, A. R. & Alizadeh, H. (2016) Molecular identification of cysteine and trypsin protease, effect of different hosts on protease expression, and rnai mediated silencing of cysteine protease gene in the sunn pest. Archives of insect biochemistry and physiology 91(4), 189-209. https://doi.org/10.1002/arch.21311.
Atashi, N., Seraj, A. A., Rasekh, A. & Hemmati, S. A. (2023) The effect of temperature on the bionomics of Trichogramma euproctidis (Hym.: Trichogrammatidae) parasitizing the tomato fruitworm, Helicoverpa armigera (Lep.: Noctuidae). Plant Protection (Scientific Journal of Agriculture). https://doi.org/10.22055/PPR.2023.42910.1677.
Bari, M. N., Jahan, M. & Islam, K. S. (2015) Effects of temperature on the life table parameters of Trichogramma zahiri (Hymenoptera: Trichogrammatidae), an egg parasitoid of Dicladispa armigera (Chrysomelidae: Coleoptera). Environmental Entomology 44(2), 368-378. https://doi.org/10.1093/ee/nvu028
Basha, E., O’Neill, H. & Vierling, E. (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends in biochemical sciences 37(3), 106-117. https://doi.org/10.1016/j.tibs.2011.11.005
Bellows, T. S. & Fisher, T. W. (1999). Handbook of biological control: principles and applications of biological control (No. 632.96 B4).
Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A. & Larsson, S. (2005) Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological applications 15(6), 2084-2096. https://doi.org/10.1890/04-1903
Bowen, W. R. & Stern, V. M. (1966) Effect of temperature on the production of males and sexual mosaics in a uniparental race of Trichogramma semifumatum (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America 59(4), 823-834. https://doi.org/10.7717/peerj.7567
Bradshaw, W. E. & Holzapfel, C. M. (2001) Genetic shift in photoperiodic response correlated with global warming. Proceedings of the National Academy of Sciences 98(25), 14509-14511. https://doi.org/10.1073/pnas.241391498
Chatterjee, P., Samaddar, S., Niinemets, Ü. & Sa, T. M. (2018) Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H+ ATPase activity. Microbiological research 215, 89-101. https://doi.org/10.1016/j.micres.2018.06.007
Coelho Jr, A., Rugman-Jones, P. F., Reigada, C., Stouthamer, R. & Parra, J. R. (2016) Laboratory performance predicts the success of field releases in inbred lines of the egg parasitoid Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). PLoS One 11(1), e0146153. https://doi.org/10.1371/journal.pone.0146153
Consoli, F. L., Parra, J. R. & Zucchi, R. A. (Eds.). (2010) Egg parasitoids in agroecosystems with emphasis on Trichogramma (Vol. 9). Springer Science & Business Media.
Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809), 184-187. https://doi.org/10.1038/35041539.
Dandan, X., Deshuai, A. & Jianqin, Z. (2022) Dynamics of the Alpine Treeline Ecotone under Global Warming: A Review. Journal of Resources and Ecology 13(3), 476-482. https://doi.org/ 10.5814/j.issn.1674-764x.2022.03.012
de Freitas Bueno, R. C. O., Parra, J. R. P. & de Freitas Bueno, A. (2012) Trichogramma pretiosum parasitism of Pseudoplusia includens and Anticarsia gemmatalis eggs at different temperatures. Biological Control 60(2), 154-162. https://doi.org/10.1590/1806-9665-RBENT-2019-105
Del Pino, M., Gallego, J. R., Hernández Suárez, E. & Cabello, T. (2020) Effect of temperature on life history and parasitization behavior of Trichogramma achaeae Nagaraja and Nagarkatti (Hym.: Trichogrammatidae). Insects 11(8), 482. https://doi.org/10.3390%2Finsects11080482
Ding, Z., Kong, Y., Qi, C., Liu, Y., Zhang, Y. & Ye, J. (2021) The alleviative effects of taurine supplementation on growth, antioxidant enzyme activities, hepatopancreas morphology and mRNA expression of heat shock proteins in freshwater prawn Macrobrachium nipponense (De Haan) exposed to dietary lead stress. Aquaculture Nutrition 27(6), 2195-2204. https://doi.org/10.1111/anu.13354
Farahani, S., Bandani, A. R., Alizadeh, H., Goldansaz, S. H., & Whyard, S. (2020) Differential expression of heat shock proteins and antioxidant enzymes in response to temperature, starvation, and parasitism in the Carob moth larvae, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). PloS one15(1), e0228104. https://doi.org/10.1371/journal.pone.0228104
Farahani, S. & Bandani, A. R. (2023) Plant essential oils induce expression of heat shock proteins and antioxidant enzyme activity in carob moth, Ectomyelois ceratoniae (Lepidoptera: Pyralidae). Eropean Journal of Entomology 120(1), 161-169. https://doi.org/10.14411/eje.2023.021
Gaston, A. J., Gilchrist, H. G. & Hipfner, J. M. (2005) Climate change, ice conditions and reproduction in an Arctic nesting marine bird: Brunnich's guillemot (Uria lomvia L.). Journal of Animal Ecology 832-841.  https://doi.org/10.1111/j.1365-2656.2005.00982.x
Gibbs, J. P. & Breisch, A. R. (2001) Climate warming and calling phenology of frogs near Ithaca, New York, 1900–1999. Conservation Biology 15(4), 1175-1178.
Gilman, S. E., Wethey, D. S. & Helmuth, B. (2006) Variation in the sensitivity of organismal body temperature to climate change over local and geographic scales. Proceedings of the National Academy of Sciences 103(25), 9560-9565. https://doi.org/10.1073/pnas.0510992103
Hassall, C., Thompson, D. J., French, G. C. & Harvey, I. F. (2007) Historical changes in the phenology of British Odonata are related to climate. Global Change Biology 13(5), 933-941.  https://doi.org/10.1111/j.1365-2486.2007.01318.x
Iranipour, S., Farazmand, A., Saber, M. & Mashhadi, J. M. (2009) Demography and life history of the egg parasitoid, Trichogramma brassicae, on two moths Anagasta kuehniella and Plodia interpunctella in the laboratory. Journal of Insect Science 9(1). https://doi.org/10.1673/031.009.5101
Iranipour, S., Vaez, N., Nouri Ghanbalani, G., Asghari Zakaria, R. & Mashhadi Jafarloo, M. (2010) Effect of host change on demographic fitness of the parasitoid, Trichogramma brassicaeJournal of Insect Science 10(1), 78. https://doi.org/10.1673/031.010.7801
Katz, M. E., Wright, J. D., Miller, K. G., Cramer, B. S., Fennel, K. & Falkowski, P. G. (2005) Biological overprint of the geological carbon cycle. Marine Geology 217(3-4), 323-338. https://doi.org/10.1016/ j.margeo. 2004.08.005
King, A. M. & MacRae, T. H. (2015) Insect heat shock proteins during stress and diapause. Annual review of entomology 60, 59-75. https://doi.org/10.1146/annurev-ento-011613-162107
Kiritani, K. (2006) Predicting impacts of global warming on population dynamics and distribution of arthropods in Japan. Population Ecology 48(1), 5-12. https://doi.org/10.1007/s10144-005-0225-0
Li, T. H., Tian, C. Y., Zang, L. S., Hou, Y. Y., Ruan, C. C., Yang, X., Monticelli, L. & Desneux, N. (2019). Multiparasitism with Trichogramma dendrolimi on egg of Chinese oak silkworm, Antheraea pernyi, enhances emergence of Trichogramma ostriniae. Journal of Pest Science 92, 707-713. https://doi.org/10.1007/s10340-018-1018-5
Livak, K. J. & Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262.
Lu, J., Vecchi, G. A. & Reichler, T. (2007) Expansion of the Hadley cell under global warming. Geophysical Research Letters 34(6). https://doi.org/10.1029/2006GL028443
Lundgren, J. G., Heimpel, G. E. & Bomgren, S. A. (2002) Comparison of Trichogramma brassicae (Hymenoptera: Trichogrammatidae) augmentation with organic and synthetic pesticides for control of cruciferous Lepidoptera. Environmental Entomology 31(6), 1231-1239. https://doi.org/10.1603/0046-225X-31.6.1231
Macpherson, J. S., Jodrell, D. I. & Guichard, S. M. (2006) Validation of real-time reverse-transcription-polymerase chain reaction for quantification of capecitabine-metabolizing enzymes. Analytical biochemistry 350(1), 71-80. https://doi.org/10.1016/j.ab.2005.11.040
Marchioro, C. A., Krechemer, F. S. & Foerster, L. A. (2015) Assessing the total mortality caused by two species of Trichogramma on its natural host Plutella xylostella (L.) at different temperatures. Neotropical entomology 44, 270-277. https://doi.org/10.1007/s13744-014-0263-4.
Menzel, A. (2002) Phenology: its importance to the global change community. Climatic change 54(4), 379. https://doi.org/10.1023/A:1016125215496
Menzel, A., Estrella, N. & Testka, A. (2005) Temperature response rates from long-term phenological records. Climate Research 30(1), 21-28. https://doi.org/10.3354/cr030021
Miles, J. E., Bale, J. S. & Hodkinson, I. D. (1997) Effects of temperature elevation on the population dynamics of the upland heather psyllid Strophingia ericae (Curtis) (Homoptera: Psylloidea). Global Change Biology 3(3), 291-297. https://doi.org/10.1046/j.1365-2486.1997.00079.x
Negahban, M., Sedaratian-Jahromi, A., Ghane-Jahromi, M., Haghani, M. & Zalucki, M. P. (2021) Response of Trichogramma brassicae (Hym.: Trichogrammatidae) to temperature: Utilizing thermodynamic models to describe curvilinear development. Crop Protection 143, 105562. https://doi.org/10.1016/j.cropro.2021.105562
Pascual, S., Rodríguez-Álvarez, C. I., Kaloshian, I. & Nombela, G. (2023) Hsp90 Gene Is Required for Mi-1-Mediated Resistance of Tomato to the Whitefly Bemisia tabaciPlants 12(3), 641. https://doi.org/10.3390/plants12030641
Robinet, C. & Roques, A. (2010) Direct impacts of recent climate warming on insect populations. Integrative zoology 5(2), 132-142. https://doi.org/10.1111/j.1749-4877.2010.00196.x
Roth, T., Plattner, M. & Amrhein, V. (2014) Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PloS One 9(1), e82490. https://doi.org/10.1371/journal.pone.0082490
Roy, D. B. & Sparks, T. H. (2000) Phenology of British butterflies and climate change. Global change biology 6(4), 407-416. https://doi.org/10.1046/j.1365-2486.2000.00322.x
Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. (1999) Climate‐related change in an intertidal community over short and long time scales. Ecological monographs 69(4), 465-490. https://doi.org/10.2307/2657226
Schwartz, M. D. (Ed.). (2003) Phenology: an integrative environmental science (p. 564). Dordrecht: Kluwer Academic Publishers.
Sørensen, J. G., Kristensen, T. N. & Loeschcke, V. (2003) The evolutionary and ecological role of heat shock proteins. Ecology letters 6(11), 1025-1037. https://doi.org/10.1046/j.1461-0248.2003.00528.x
Tan, K., Zhang, B., Ma, H., Li, S. & Zheng, H. (2019) Oxidative stress responses of golden and brown noble scallops Chlamys nobilis to acute cold stress. Fish & shellfish immunology 95, 349-356. https://doi.org/10.1016/j.fsi.2019.10.047
Tissiéres, A., Mitchell, H. K. & Tracy, U. M. (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. Journal of molecular biology 84(3), 389-398. https://doi.org/10.1016/0022-2836(74)90447-1.
Ulrich, W. (1999) Species composition, coexistence and mortality factors in a carrion-exploiting community composed of necrophagous Diptera and their parasitoids(Hymenoptera). Polish Journal of Ecology 47(1), 49-72.
Visser, M. E., Both, C. & Lambrechts, M. M. (2004) Global climate change leads to mistimed avian reproduction. Advances in ecological research 35, 89-110. https://doi.org/10.1016/S0065-2504(04)35005-1
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O. & Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416(6879), 389-395.https://doi.org/10.1038/416389a.
Wang, B., Ferro, D. N., Wu, J. & Wang, S. (2004) Temperature-dependent development and oviposition behavior of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae), a potential biological control agent for the European corn borer (Lepidoptera: Crambidae). Environmental entomology 33(4), 787-793. https://doi.org/10.1603/0046-225X-33.4.787
Wunderling, N., Winkelmann, R., Rockström, J., Loriani, S., Armstrong McKay, D. I., Ritchie, P. D., Sakschewski, B. & Donges, J. F. (2023). Global warming overshoots increase risks of climate tipping cascades in a network model. Nature Climate Change 13(1), 75-82. https://doi.org/10.21203/rs.3.rs-1418830/v1
Zhao, L. & Jones, W. A. (2012) Expression of heat shock protein genes in insect stress responses. Invertebrate Survival Journal 9(1), 93-101.
Zhao, Y., Li, Y., He, M., Yun, Y. & Peng, Y. (2020) Antioxidant responses of the pest natural enemy Hylyphantes graminicola (Araneae: Linyphiidae) exposed to short-term heat stress. Journal of Thermal Biology 87, 102477.https://doi.org/10.1016/j.jtherbio.2019.102477.