نرخ استقرار نسبی و ترجیح میزبانی شته مومی سیب Eriosoma lanigerum (Hausmann, 1802)(Hemiptera: Aphididae) روی پایه‌های هیبرید امیدبخش سیب

نوع مقاله : مقاله کامل، فارسی

نویسندگان

سازمان تحقیقات، آموزش و ترویج کشاورزی، مؤسسه تحقیقات علوم باغبانی، پژوهشکده میوه‌های معتدله و سردسیری، کرج، ایران

10.61186/jesi.43.3.4

چکیده

شته مومی Eriosoma lanigerum Hausmann (Hem.: Aphididae) یکی از آفات اصلی سیب در سراسر جهان است. هدف از انجام این پژوهش، بررسی ترجیح میزبانی شته مومی سیب در 10 ژنوتیپ انتخابی از میان نتاج امیدبخش حاصل از هیبریداسیون و گرده‌افشانی آزاد ژنوتیپ‌های پاکوتاه بومی سیب (آزایش اصفهان و مربائی مشهد) به عنوان والد مادری، و پایه‌های رویشی تجاری سیب (M9, M27, B9) به عنوان والد پدری بود. این پروژه طی سال‌های 1399 تا 1401 انجام شد. نظارت بر کلونی­های شته مومی سیب هر 2 هفته یکبار از ابتدای فروردین تا آبان‌ماه انجام شد. در ادامه بررسی، نرخ استقرار نسبی و شاخص ترجیح شته محاسبه شد. صفات رویشی شامل درصد ریشه­زایی، تعداد ریشه تولید شده، طول ناحیه ریشه­زا روی پایک­ها، طول ریشه­ها و تعداد پایک تولید شده اندازه‌گیری گردید. برای تفکیک هیبریدها، روش تحلیل خوشه‏ای و درجه تأثیر صفات مختلف بر شاخص­ها از طریق تجزیه و تحلیل رابطه همبستگی بکار رفت. میانگین نرخ استقرار و شاخص ترجیح به ترتیب معادل 14/0 ± 42/2 و 06/0 ±  96/0 بود. غیرحساس­ترین و حساس­ترین پایه هیبرید به ترتیب Azop3(1386) وM9op3 بودند. برخی از خصوصیات رویشی پایه­های هیبرید از جمله میانگین طول ریشه تولیدی پایک در بروز تفاوت­های پایه­های هیبرید سیب مورد مطالعه از نظر نرخ استقرار و ترجیح میزبانی شته مومی سیب مؤثر بوده­اند. نتایج این پژوهش در برنامه­های اصلاحی آینده ارقام سیب کاربرد دارد.

چکیده تصویری

نرخ استقرار نسبی و ترجیح میزبانی شته مومی سیب  Eriosoma lanigerum  (Hausmann, 1802)(Hemiptera: Aphididae) روی پایه‌های هیبرید امیدبخش سیب

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Relative establishment rate and host preference of wooly apple aphid Eriosoma lanigerum (Hausmann, 1802)(Hemiptera: Aphididae) on promising apple hybrid rootstocks

نویسندگان [English]

  • Masoud Latifian
  • Dariush Atashkar
  • Razieh Ghaemi
Agricultural Research, Education and Extension Organization, Horticultural Sciences Research Institute, Temperate Fruits Research Center, Karaj, Iran
چکیده [English]

The wooly apple aphid, Eriosoma lanigerum Hausmann (Hem.: Aphididae), is one of the main pests of apples all over the world. The purpose of this research was to investigate the host preference of wooly apple aphids toward 10 selected genotypes among the promising offspring obtained from hybridization and free pollination of indigenous apple genotypes (Azaish Isfahan and Marbai Mashhad) as maternal parent, and commercial apple cultivars (M9, M27, B9) as a paternal parent. This project was carried out during 2020 to 2022. The colonies of wooly apple aphids were monitored every 2 weeks from the beginning of April to November. Relative establishment rate and aphid preference index were calculated. Vegetative traits including percentage of rooting, number of roots produced, length of the rooting zone on stems, length of roots and number of stems produced were measured. In order to differentiate the hybrids, the cluster analysis method and the degree of effect of different traits on the indices were investigated through correlation analysis. The average establishment rate and preference index were 2.42±0.14 and 0.96±0.06, respectively. The most insensitive and the most sensitive hybrid base were Azop3(1386) and M9op3, respectively. Some of the vegetative characteristics of the hybrid rootstocks, including the average length of the productive root of the line have been effective in the occurrence of differences in the studied apple hybrid rootstocks in terms of establishment rate and host preference of wooly apple aphid. The results of this research are used in the future improvement programs of apple cultivars.

کلیدواژه‌ها [English]

  • Apple
  • Pests
  • Pest management
  • Plant resistance
  • Dwarf genotypes

© 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License.

Alspach, P. A. & Bus, V. G. (1999) Spatial variation of woolly apple aphid (Eriosoma lanigerum, Hausmann) in a genetically diverse apple planting. New Zealand Journal of Ecology 39-44. http://www.jstor.org/stable/24054745
Atashkar, D. (2016) Study of rooting ability in progeny of some apple (Mallus domestica Borkh.) hybrid rootstocks. Iranian Journal of Horticultural Science and Technology 17 (3) :273-284  http://journal-irshs.ir/article-1-207-fa.html
Atashkar, D., Ershadi, A. & Abdollahi, H. (2020) Effects of drought stress on physiological and biochemical indices in hybrid apple rootstocks. Iranian Journal of Horticultural Science and Technology 21 (2) :107-122  http://journal-irshs.ir/article-1-363-fa.html
Atashkar, D., Pirkhezri, M. & Taghizadeh, A. A. (2016) Production and primary evaluation of apple (Mallus domestica Borkh.) hybrid rootstocks. Iranian Journal of Horticultural Science 47(2), 329-335. 10.22059/ijhs.2016.58534
Baron, D., Amaro, A. C. E., Pina, A. & Ferreira, G. (2019) An overview of grafting re-establishment in woody fruit species. Scientia Horticulturae 243, 84-91. https://doi.org/10.1016/j.scienta.2018.08.012
Beers, E. H., Cockfield, S. D. & Gontijo, L. M. (2010) Seasonal phenology of woolly apple aphid (Hemiptera: Aphididae) in Central Washington. Environmental Entomology 39(2), 286-294. https://doi.org/10.1603/EN09280
Bus, V. G., Bassett, H. C., Bowatte, D., Chagné, D., Ranatunga, C. A., Ulluwishewa, D., Wiedow, C. & Gardiner, S. E. (2010) Genome mapping of an apple scab, a powdery mildew and a woolly apple aphid resistance gene from open-pollinated Mildew Immune Selection. Tree Genetics & Genomes 6, 477-487. https://doi.org/10.1007/s11295-009-0265-2
Damavandian, M. R. (2000) Biology of subterranean populations of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Homoptera: Aphididae), in apple orchards. PhD dissertation, Stellenbosch, Stellenbosch University.  http://hdl.handle.net/10019.1/51638
de Ilarduya, O. M., Xie, Q. G. & Kaloshian, I. (2003) Aphid-induced defenseresponses in Mi-1-mediated compatible and incompatible tomato interactions, Molecular Plant-Microbe Interactions 16 699–708. https://doi.org/10.1094/MPMI.2003.16.8.699
Da Silva, J. P. G. F., Baldin, E. L. L., de Souza, E. S. & Lourenção, A. L. (2012) Assessing Bemisia tabaci (Genn.) biotype B resistance in soybean genotypes: antixenosis and antibiosis. Chilean Journal of Agricultural Research 72(4), 516. http://dx.doi.org/10.4067/S0718-58392012000400009.
Dogimont, C., Chovelon, V., Tual, S., Boissot, N., Rittener-Ruff, V., Giovinazzo, N. & Bendahmane, A. A. (2008). Molecular diversity at the Vat/Pm-W resistance locus in melon. In 9. Congrès international Eucarpia Meeting on Genentics and Breeding of Cucurbitaceae. Pitrat Michel. http://dx.doi.org/10.3389/fpls.2016.01420
Duan, X., Pan, S., Fan, M., Chu, B., Ma, Z., Gao, F. & Zhao, Z. (2022) Cultivar mixture enhances crop yield by decreasing aphids. Agronomy 12(2), 335. https://doi.org/10.3390/agronomy12020335
Edwards, C. A. (2020) The importance of integration in sustainable agricultural systems. in Sustainable Agricultural Systems (pp. 249-264). CRC Press. https://doi.org/10.1201/9781003070474
Ehteshami-Moinabadi, M. (2022) Properties of fault zones and their influences on rainfall-induced landslides, examples from Alborz and Zagros ranges. Environmental Earth Sciences 81(5), 168. https://doi.org/10.1007/s12665-022-10283-2
Fazio, G., Aldwinckle, H. & Robinson, T. (2013) Unique characteristics of Geneva® apple rootstocks. Encontro Nacional sobre Fruticultura de Clima Temperado De 23 a 25/07/2013 Fraiburgo, SC, 1. https://doi.org/10.1590/S0100-204X2018000800007
Fotirić Akšić, M., Dabić Zagorac, D., Gašić, U., Tosti, T., Natić, M. & Meland, M. (2022) Analysis of apple fruit (Malus× domestica Borkh.) quality attributes obtained from organic and integrated production systems. Sustainability 14(9), 5300. https://doi.org/10.3390/su14095300
Frades, I. & Matthiesen, R. (2010) Overview on techniques in cluster analysis. Bioinformatics Methods in Clinical Research 81-107. https://doi.org/10.1007/978-1-60327-194-3_5
García, D., Miñarro, M. & Martínez-Sastre, R. (2021) Enhancing ecosystem services in apple orchards: Nest boxes increase pest control by insectivorous birds. Journal of Applied Ecology 58(3), 465-475. https://doi.org/10.1111/1365-2664.13823
Gogtay, N. J. & Thatte, U. M. (2017) Principles of correlation analysis. Journal of the Association of Physicians of India 65(3), 78-81. PMID: 28462548. https://pubmed.ncbi.nlm.nih.gov/28462548/
Guerrieri, E. & Digilio, M. C. (2008) Aphid-plant interactions: a review. Journal of Plant Interactions 3(4), 223-232. https://doi.org/10.1080/17429140802567173
Hao, Z., Lingjun, D., Fang-Hao, W. & Hongxu, Z. (2020) Comparative analysis of stylet penetration behaviors of Eriosoma lanigerum (Hemiptera: Aphididae) on main apple cultivars in China. Journal of Economic Entomology 113(4), 1761-1767.  https://doi.org/10.1093/jee/toaa085
Hill, C. B., Li Y. & Hartman G. L. (2004) Resistance to the soybean aphid in soybean germplasm, Crop Science 44 98–106. https://doi.org/10.2135/cropsci2004.9800
Klingler, J. Creasy, R. Gao, L. L. Nair, R. M. Calix, A. S. Jacob, H. S. Edwards, O .R. & Singh, K. B. (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs, Plant Physiology 137 1445–1455. https://doi.org/10.1104/pp.104.051243
Kogan, M. & Goeden, R. D. (1970) The host-plant range of Lema trilineata daturaphila (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America 63(4), 1175-1180. https://doi.org/10.1093/AESA/63.4.1175
Krisnawati, A., Bayu, M. S. Y. I. & Adie, M. M. (2017) Identification of soybean genotypes based on antixenosis and antibiosis to the armyworm (Spodoptera litura). Nusantara Bioscience 9(2), 164-169. https://doi.org/10.13057/nusbiosci/n090210
Latifian, M., Seyedoleslami, H. & Khajeali, J. (2009) Comparison of several sampling techniques to estimate population densities of the grape leafhopper Arboridia kermanshah Dlabola (Hem., Cicadellidae). IAU Entomological Research Journal 1(2), 95-108. https://doi.org/20.1001.1.22518517.1384.9.2.18.3
Le Pelley, R. (1927) Studies on the resistance of apple to the woolly aphis (Eriosoma lanigerum Hausm.). Journal of Pomology and Horticultural Science 6(3), 209-241. https://doi.org/10.1080/03683621.1927.11513323
Louda, S. M. & Collinge, S. K. (1992) Plant resistance to insect herbivores: a field test of the environmental stress hypothesis. Ecology 73(1), 153-169.  https://doi.org/10.2307/1938728
Loxdale, H. D. & Balog, A. (2018) Aphid specialism as an example of ecological–evolutionary divergence. Biological Reviews, 93(1), 642-657. https://doi.org/10.1111/brv.12361
Lordan, J., Alegre, S., Gatius, F., Sarasúa, M. J. & Alins, G. (2015) Woolly apple aphid Eriosoma lanigerum Hausmann ecology and its relationship with climatic variables and natural enemies in Mediterranean areas. Bulletin of Entomological Research 105(1), 60- https://doi.org/69. 10.1017/S0007485314000753
Machlitt, D. (1998) Persea mite on avocados: quick field counting method. Subtropical Fruit News 6: 1–4.
Mackenzie, J. D. & Cummins, J. N. (1982) Differentiation of Malus clones into resistance classes by their effects on the biology of Eriosoma lanigerum Hausmn. Journal of the American Society for Horticultural Science 107(5), 737-740. https://doi.org/10.21273/JASHS.107.5.737
Marshall, A. T. & Beers, E. H. (2022) Exclusion netting affects apple arthropod communities. Biological Control 165, 104805. https://doi.org/10.1016/j.biocontrol.2021.104805
Mensah, C., DiFonzo, C., Nelson, R. L. & Wang, D. C. (2005) Resistance to soybean aphid in early maturing soybean germplasm, Crop Science 45, 2228–2233. https://doi.org/10.2135/cropsci2004.0680
Orpet, R. J., Jones, V. P., Beers, E. H., Reganold, J. P., Goldberger, J. R. & Crowder, D. W. (2020) Perceptions and outcomes of conventional vs. organic apple orchard management. Agriculture, Ecosystems & Environment 289, 106723. https://doi.org/10.1016/j.agee.2019.106723
Osborne, J. (2010) Improving your data transformations: Applying the Box-Cox transformation. Practical Assessment, Research, and Evaluation 15(1), 12. https://doi.org/10.7275/qbpc-gk17
Painter, R. H. (1951) Insect Resistance in Crop Plants. Macmillan, New York.
Pascal, T., Pfeiffer, F., Kervella, J., Lacroze, J. P., Sauge, M. H. & Weber, W. E. (2002) Inheritance of green peach aphid resistance in the peach cultivar ‘Rubira’. Plant Breeding 121(5), 459-461. https://doi.org/10.1046/j.1439-0523.2002.734333.x
Rogers, D. J., Sharma, N., Stretton, D. C. & Walker, J. T. S. (2011) Toxicity of pesticides to Aphelinus mali, the parasitoid of woolly apple aphid. New Zealand Plant Protection 64: 235-240. https://doi.org/10.30843/nzpp.2011.64.5960
Russo, N. L., Robinson, T. L., Fazio, G. & Aldwinckle, H. S. (2007) Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. HortScience 42(7), 1517-1525. https://doi.org/10.21273/HORTSCI.42.7.1517
Saeid, A. R. & Ateyyat, M. (2014) Phenotypic and molecular screening of apple genotypes to woolly apple aphid resistance. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(1), 99-103. https://doi.org/10.15835/nbha4219460
Sandanayaka, W. R. M., Bus, V. G. M., Connolly, P. & Newcomb, R. (2003) Characteristics associated with woolly apple aphid, Eriosoma lanigerum, resistance of three apple rootstocks. Entomologia Experimentalis et Applicata 109(1), 63-72. https://doi.org/10.1046/j.1570-7458.2003.00095.x
Sandanayaka, W. R. M., Bus, V. G. M. & Connolly, P. (2005) Mechanisms of woolly aphid [Eriosoma lanigerum (Hausm.)] resistance in apple. Journal of Applied Entomology 129(9-10), 534-541. https://doi.org/10.1111/j.1439-0418.2005.01004.x
Saxena, R. C. & Barrion, A. A. (1987) Biotypes of insect pests of agricultural crops. International Journal of Tropical Insect Science 8(4-5-6), 453-458. https://doi.org/10.1017/S1742758400022475
Staniland, L. N. (1924) The immunity of apple stocks from attacks of woolly aphis (Eriosoma lanigerum, Hausmann). Part II. The causes of the relative resistance of the stocks. Bulletin of Entomological Research 15(2), 157-170. https://doi.org/10.1017/S0007485300031527
Sauge, M. H., Lacroze, J. P., Poëssel, J. L., Pascal, T. & Kervella, J. (2002) Induced resistance by Myzus persicae in the peach cultivar ‘Rubira’. Entomologia Experimentalis et Applicata 102(1), 29-37. https://doi.org/10.1046/j.1570-7458.2002.00922.x
Selala, M. C. (2007). Genetic analysis for resistance to Woolly Apple Aphid in an apple rootstock breeding population. PhD dissertation. University of the Western Cape, Republic of South Africa. http://hdl.handle.net/11394/3116
Silva, F. W. & Elliot, S. L. (2016) Temperature and population density: interactional effects of environmental factors on phenotypic plasticity, immune defenses, and disease resistance in an insect pest. Ecology and Evolution 6(11), 3672-3683. https://doi.org/10.1002/ece3.2158
Singh, B., Simon, A., Halsey, K., Kurup, S., Clark, S. & Aradottir, G. I. (2020) Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Annals of Applied Biology 177(2), 184-194. https://doi.org/10.1111/aab.12616
Sun, Y., Wang, M., Mur, L. A. J., Shen, Q. & Guo, S. (2020) Unravelling the roles of nitrogen nutrition in plant disease defences. International Journal of Molecular Sciences 21(2), 572. https://doi.org/10.3390/ijms21020572
Thomas, S., Mistral, P., Chareyron, V., Boissot, N. & Pitrat, M. (2008) Marker assisted selection of genes and QTLs for resistance combinations to Aphis gossypii in melon.Proceeding of IX th. EUCARPIA meeting on genetics and breeding of Cucurbitacea. INRA, France.
Tu, X. B., Fan, Y. L., McNeill, M. & Zhang, Z. H. (2018) Including predator presence in a refined model for assessing resistance of alfalfa cultivar to aphids. Journal of Integrative Agriculture 17(2), 397-405. https://doi.org/10.1016/S2095-3119(17)61708-8
Verghese, A. & Jayanthi, P. K. (2002) A technique for quick estimation of aphid numbers in field. Current Science 1165-1168. https://www.nbair.res.in/sites/default/files/2019-01
Zaayman, D., Lapitan, N. L. & Botha, A. M. (2009) Dissimilar molecular defense responses are elicited in Triticum aestivum after infestation by different Diuraphis noxia biotypes. Physiologia Plantarum 136(2), 209-222. https://doi.org/10.1111/j.1399-3054.2009.01232.x
Zhao, L., He, N., Wang, J., Siddique, K. H., Gao, X. & Zhao, X. (2022) Plasticity of root traits in a seedling apple intercropping system driven by drought stress on the Loess Plateau of China. Plant and Soil 1-20. https://doi.org/10.1007/s11104-022-05603-1
Zhu, Y., Fazio, G. & Mazzola, M. (2014) Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools. Horticulture Research 1, 14043. https://doi.org/10.1038/hortres.2014.43
Züst, T. & Agrawal, A. A. (2016) Mechanisms and evolution of plant resistance to aphids. Nature Plants 2(1), 1-9. https://doi.org/10.1038/nplants.2015.206