بررسی پراکنش جغرافیایی و تراکم جمعیت سرخرطومی آزولا Stenopelmus rufinasus Gyllenhal در شالیزارها و زیستگاه‌های آبی شمال کشور

نوع مقاله : مقاله کامل، فارسی

نویسندگان

1 بخش تحقیقات گیاه‌پزشکی، موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

2 بخش تحقیقات گیاه‌پزشکی، موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، آمل، ایران

10.61186/jesi.43.3.6

چکیده

آزولا (Azolla spp.: Salviniaceae) نوعی سرخس آبزی است که با هدف افزایش حاصلخیزی اراضی شالیزاری وارد کشور شد، اما این علف‌هرز به دلیل شرایط اقلیمی مناسب و فقدان دشمنان طبیعی در زیستگاه جدید، طغیان نمود و به معضلی در زراعت برنج و عاملی مخرب در اکوسیستم‌های آبی تبدیل شد. در سال‌های اخیر عامل کنترل بیولوژیک این علف‌هرز به نام سرخرطومی آزولا (Stenopelmus rufinasus Gyllenhal (Curculionidae وارد شمال ایران شد. در این پژوهش پراکنش جغرافیایی و تراکم فصلی جمعیت سرخرطومی آزولا با نمونه‌برداری‌های منظم ماهیانه در شمال کشور مورد بررسی قرار گرفت. نتایج نشان داد که مدت زمان لازم برای تکمیل یک نسل در شرایط نیمه‌صحرایی حدود دو هفته است. لاروها و حشرات کامل هر دو از آزولا تغذیه می‌کنند. سرخرطومی آزولا در شمال کشور به خوبی پراکنش یافته و مستقر شده است و با تغذیه از آزولا جمعیت آن را در تالاب‌ها، مانداب‌های دائمی و شالیزارها کاهش داده است. در مقایسه تراکم جمعیت سرخرطومی در سه منطقه غرب، شرق و مرکز استان گیلان مشخص شد که بیشترین تعداد کل (667 عدد حشره در یک کیلوگرم آزولا) و بیشترین تعداد حشرات بالغ (363 حشره‌ی بالغ در یک کیلوگرم آزولا) در منطقه مرکزی استان بود. در حالی‌که تراکم لاروها (397 عدد لارو در یک کیلوگرم آزولا) در منطقه شرقی استان بیشتر از مناطق دیگر بود. در بررسی تراکم جمعیت در شهرستان‌های مختلف گیلان، بالاترین تراکم کل (2690 لارو و حشره‌ی کامل در یک کیلوگرم آزولا) و حشرات بالغ (2022 حشره‌ِ بالغ در یک کیلوگرم آزولا) در شهرستان شفت و بالاترین تراکم لارو (1920 لارو در یک کیلوگرم آزولا) در منطقه رودبنه لاهیجان مشاهده شد. بر اساس نتایج به دست آمده، تراکم فصلی جمعیت سرخرطومی در بهار و زمستان بالاتر بود که با توجه به شرایط اقلیمی منطقه و حساسیت آزولا به گرما و رطوبت، بدیهی به نظر می‌رسد. بر اساس یافته‌های این پژوهش، سرخرطومی آزولا به خوبی در مناطق شمالی کشور گسترش یافته و مستقر شده است.

چکیده تصویری

بررسی پراکنش جغرافیایی و تراکم جمعیت سرخرطومی آزولا Stenopelmus rufinasus Gyllenhal در شالیزارها و زیستگاه‌های آبی شمال کشور

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Study on geographical distribution and population density of Stenopelmus rufinasus Gyllenhal, in paddy fields and aquatic ecosystems in northern Iran

نویسندگان [English]

  • Mahdi Jalaeian 1
  • Atousa Farahpour-Haghani 1
  • Farzad Majidi-Shilsar 1
  • Bijan Yaghoubi 1
  • Mehrdad Amooghli-Tabari 2
1 Department of Plant Protection, Rice Research Institute of Iran, (AREEO), Rasht, Iran
2 Department of Plant Protection, Rice Research Institute of Iran, (AREEO), Amol, Iran
چکیده [English]

Azolla (Azolla spp.: Salviniaceae) is an aquatic fern that was introduced to the northern region of Iran with the aim of increasing the fertility of paddy fields, but due to suitable climatic conditions and the absence of natural enemies it became a problem in rice production and a destructive factor in aquatic ecosystems. In recent years, the biological control agent of this weed, Azolla weevil Stenopelmus rufinasus Gyllenhal (Curculionidae), was introduced in northern region of Iran. In this study, geographical distribution and seasonal population density of S. rufinasus in northern Iran were investigated through regular monthly sampling. The results showed that the time required to complete one generation in semi-field conditions is about two weeks. Both larvae and adults feed on Azolla. Azolla weevil is well distributed and established in the north regions of Iran and by feeding on Azolla, it has reduced its population in wetlands, permanent ponds and paddy fields. Comparing the population density of the weevil in three regions of Guilan province, indicated that the highest number of total density (667 insect in 1 kg Azolla) and adult (363 adults in 1 kg Azolla) belong to the central region of the province, while the density of larvae (397 larvae in 1 kg Azolla) in the eastern region of the province was higher than other regions. In the survey of the density in different cities, the highest density of total (2690 adults and larvae in 1 kg Azolla) and adult insects (2022 adults in 1 kg Azolla) was observed in Shaft city and the highest density of larvae (1920 larvae in 1 kg Azolla) was observed in the Rudbane of Lahijan. Based on the obtained results, the population density of the weevil is higher in spring and winter, which is not far from the mind considering the climatic conditions of the region and the sensitivity of Azolla to heat and low humidity. Based on the findings of this survey, the weevil has spread and settled well in the northern regions

کلیدواژه‌ها [English]

  • Weevil
  • Biological Control
  • Paddy field
  • Guilan
  • Mazandaran

© 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License.

Anonymous, (2018) Statistical report of the synoptic stations of the Meteorological Organization and base rain gauge stations, Ministry of Energy, Iran.
Alonso-Zarazaga M. A. & Lyal C. H. C. (1999) A World Catalogue of Families and Genera of Curculionoidea (Insecta: Coleoptera) (Excepting Scolytidae and Platypodidae). Entomopraxis, Barcelona, 315 pp. [27-XII-1999]
Ashton, P. J. (1992) Azolla Infestations in South Africa: History of the Introduction, Scope of the Problem and Prospects for Management. Water Quality Information Sheet. Pretoria, South Africa: Department of Water Affairs and Forestry.
Axelsen, S. & Julian, C. (1988) Weed control in small dams. Part II Control of salvinia, azolla and of water hyacinth. Queensland Agricultural Journal 114(5), 291-298.
Björkman, C., Gotthard, K. & Pettersson, M. W. (2009) Body size. In Encyclopedia of insects (pp. 114-116). Academic Press. https://doi.org/10.1016/B978-0-12-374144-8.00038-2.
Carrapiço, F., Santos, R. & Serrano, A. (2011) First Occurrence of Stenopelmus rufinasus Gyllenhal, 1835 (Coleoptera: Erirhinidae) in Portugal. The Coleopterists Bulletin 65(4), 436-437. https://doi.org/10.1649/072.065.0424.
Carson, W. P., Hovick, S. M., Baumert, A. J., Bunker, D. E. & Pendergast, T. H. (2008) Evaluating the post-release efficacy of invasive plant biocontrol by insects: a comprehensive approach. Arthropod-Plant Interactions 2(2), 77-86. https://doi.org/10.1007/s11829-008-9036-5.
Clissold, F. J. & Simpson, S. J. (2015) Temperature, food quality and life history traits of herbivorous insects. Current Opinion in Insect Science 11, 63-70. https://doi.org/10.1016/j.cois.2015.10.011.
Coetzee, J. A., Hill, M. P., Byrne, M. J. & Bownes, A. (2011) A review of the biological control programmes on Eichhornia crassipes (C. Mart.) Solms (Pontederiaceae), Salvinia molesta DS Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. African Entomology 19(2), 451-468. https://doi.org/10.4001/003.019.0202.
Davidowitz, G., D'Amico, L. J. & Nijhout, H. F. (2003) Critical weight in the development of insect body size. Evolution & development 5(2), 188-197. https://doi.org/10.1046/j.1525-142X.2003.03026.x.
Delnavaz-Hashemloian, B. & Azimi, A. A. (2009) Alien and exotic Azolla in northern Iran. African Journal of Biotechnology 8(2), 187-190.
Farahpour-Haghani, A., Jalaeian, M. & Landry, B. (2016) Diasemiopsis ramburialis (Duponchel) (Lepidoptera, Pyralidae, Spilomelinae) in Iran: first record for the country and first host plant report on water fern (Azolla filiculoides Lam., Azollaceae). Nota Lepidopterologica 39, 1-11. https://doi.org/10.3897/nl.39.6887.
Farahpour-Haghani, A. (2018) Studying on possibility of use of a rice fields active aquatic moth in biological control of aquatic weeds, Azolla filiculoides Lamarck and Azolla pinnata R. Brown in paddy fields of northern Iran, PhD thesis, University of Mohaghegh Ardabili, 154pp.
Farahpour-Haghani, A., Tosiveski, I., Yaghoubi, B., Jalaeian, M. & Pouramir, F. (2018) First report of the exotic weevil Stenopelmus rufinasus (Coleoptera: Curculionidae) occurrence in Iran. Journal of Crop Protection 7(2), 243-246.
Florencio, M., Fernández-Zamudio, R., Bilton, D. T. & Díaz-Paniagua, C. (2015) The exotic weevil Stenopelmus rufinasus Gyllenhal, 1835 (Coleoptera: Curculionidae) across a “host-free” pond network. Limnetica 34(1), 79-84. https://doi.org/10.23818/limn.34.07.
Golmohammadi, M. J., Mohammaddoust Chamanabad, H. R., Yaghoubi, B. & Oveisi, M. (2018) Rice weed community composition and richness in northern Iran: a temperate rainy area. Applied Ecology and Environmental Research 16(4), 4605-4617. https://doi.org/10.15666/aeer/1604_46054617.
Hendrich, L., Morinière, J., Haszprunar, G., Hebert, P. D., Hausmann, A., Köhler, F. & Balke, M. (2015) A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD. Molecular Ecology Resources 15(4), 795-818. https://doi.org/10.1111/1755-0998.12354.
Hill, M. P. (1997) The potential for the biological control of the floating aquatic fern, Azolla filiculoides Lamarck (red water fern/rooivaring) in South Africa. WRC.
Hill, M. P. (1998) Life history and laboratory host range of Stenopelmus rufinasus, a natural enemy for Azolla filiculoides in South Africa. BioControl 43(2), 215-224. https://doi.org/10.1023/A:1009903704275.
Hill, M. P. & Julien, M. H. (2004) The transfer of appropriate technology; key to the successful biological control of five aquatic weeds in Africa. In XI International Symposium on Biological Control of Weeds (p. 370).
Hill, J. H. & McConnachie A. J. (2009) Azolla filiculoides Lamarck (Azollaceae). In R. Muniappan, G.V.P. Reddy, and A. Raman, Eds. Biological Control of Tropical Weeds using Arthropods. Cambridge University Press, Cambridge, UK. pp. 74-87. https://doi.org/10.1017/CBO9780511576348.005.
Hill, M. P. & Coetzee, J. (2017) The biological control of aquatic weeds in South Africa: Current status and future challenges. Bothalia-African Biodiversity & Conservation 47(2), 1-12. https://doi.org/10.4102/abc.v47i2.2152.
Holmes, L. A., Nelson, W. A. & Lougheed, S. C. (2020) Food quality effects on instar‐specific life histories of a holometabolous insect. Ecology and evolution 10(2), 626-637. https://doi.org/10.1002/ece3.5790.
JICA (Japan International Cooperation Agency). (2005) The study on integrated management of Anzali Wetland in the Islamic Republic of Iran, Final report 2.
Lumpkin, T. A. & Plucknett, D. L. (1982) Azolla as a green manure: use and management in crop production. Westview Press.
Madeira, P. T., Hill, M. P., Dray Jr, F. A., Coetzee, J. A., Paterson, I. D. & Tipping, P. W. (2016) Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist. South African Journal of Botany 105, 299-305. https://doi.org/10.1016/j.sajb.2016.03.007.
McConnachie, A. J., Hill, M. P. & Byrne, M. J. (2004a) Field assessment of a frond-feeding weevil, a successful biological control agent of red waterfern, Azolla filiculoides, in southern Africa. Biological control 29(3), 326-331. https://doi.org/10.1016/j.biocontrol.2003.08.010.
McConnachie, A. J., Hill, M. P., Byrne, M. J. & de Wit, M. P. (2004b) The successful biological control of Azolla filiculoides in South Africa: an economic perspective. In XI International Symposium on Biological Control of Weeds (p. 576).
Meister, R. T. (1992) Farm Chemicals Handbook 1992. Meister Publishing Company. Willoughby, OH.
Mor, J. R., Sabater, L. C., Masferrer, J., Sala, J., Font, J. & Boix, D. (2010) Presence of the exotic weevil Stenopelmus rufinasus Gyllenhal, 1836 (Coleoptera: Erirhinidae) in Ter River (NE Iberian Peninsula). Boletín De La SEA (46), 367-372.
Morin, L., Reid, A. M., Sims-Chilton, N. M., Buckley, Y. M., Dhileepan, K., Hastwell, G. T., Nordblom, T. L & Raghu, S. (2009) Review of approaches to evaluate the effectiveness of weed biological control agents. Biological control 51(1), 1-15. https://doi.org/10.1016/j.biocontrol.2009.05.017.
Mvandaba, S. F., Owen, C. A., Hill, M. P. & Coetzee, J. A. (2019) The thermal physiology of Stenopelmus rufinasus and Neohydronomus affinis (Coleoptera: Curculionidae), two biological control agents for the invasive alien aquatic weeds, Azolla filiculoides and Pistia stratiotes in South Africa. Biocontrol Science and Technology 29(1), 44-58. https://doi.org/10.1080/09583157.2018.1525484.
Nordblom, T. L., Smyth, M. J. Swirepik, A. Sheppard, A. W. & Briese, D. T. (2002) Spatial economics of biological control: investing in new releases of insects for earlier limitation of Paterson’s curse in Australia. Agricultural Economics 27(3), 403-424. https://doi.org/10.1111/j.1574-0862.2002.tb00128.x.
Ohmart, C. P., Stewart, L. G. & Thomas, J. R. (1985) Effects of food quality, particularly nitrogen concentrations, of Eucalyptus blakelyi foliage on the growth of Paropsis atomaria larvae (Coleoptera: Chrysomelidae). Oecologia 65, 543-549. https://doi.org/10.1007/BF00379670.
PAN, (2023) Pesticide action network: https://www.panna.org/: retrieved in Jun 2023
Parys, K. A., Tewari, S. & Johnson, S. J. (2015) Adults of the Waterfern Weevil, Stenopelmus rufinasus Gyllenhal (Coleoptera: Curculionidae), Feed on a Non-Host Plant, Salvinia minima Baker, in Louisiana. The Coleopterists Bulletin 69(2), 316-318. https://doi.org/10.1649/0010-065X-69.2.316.
Rabindra, J. & Bhumannavar, B. S. (2009) Biological control of weeds in India. Biological Control of Tropical Weeds Using Arthropods, 438pp. https://doi.org/10.1017/CBO9780511576348.022.
Richerson, P. J. & Grigarick, A. A. (1967) The life history of Stenopelmus rufinasus (Coleoptera: Curculionidae). Annals of the Entomological Society of America 60(2), 351-354. https://doi.org/10.1093/aesa/60.2.351.
Sadeghi, R., Zarkami, R., Sabetraftar, K. & van Damme, P. (2013) A review of some ecological factors affecting the growth of Azolla spp. Caspian Journal of Environmental Sciences 11(1), 65-76.
Steÿn, D. J., Scott, W. E., Ashton, P. J. & Vivier, F. S. (1979) Guide to the use of herbicides on aquatic plants. Technical Report.
Van Driesche R. G., Carruthers R. I., Center T., Hoddle M. S., Hough-Goldstein J., Morin L., Smith L., Wagner D. L., Blossey B., Brancatini V., Casagrande R., Causton C. E., Coetzee J. A., Cuda J., Ding J., Fowler S. V., Frank J. H., Fuester R., Goolsby J., Grodowitz M., Heard T. A., Hill M. P., Hoffmann J. H., Huber J., Julien M., Kairo M. T. K., Kenis M., Mason P., Medal J., Messing R., Miller R., Moore A., Neuenschwander P., Newman R., Norambuena H., Palmer W. A., Pemberton R., Perez Panduro A., Pratt P. D., Rayamajhi M., Salom S., Sands D., Schooler S., Schwarzländer M., Sheppard A., Shaw R., Tipping P. W. & Van Klinken R. D. (2010) Classical biological control for the protection of natural ecosystems, Review. Biological Control 54, 2-33. https://doi.org/10.1016/j.biocontrol.2010.03.003.
van Wilgen, B. W., De Wit, M. P., Anderson, H. J., Le Maitre, D. C., Kotze, I. M., Ndala, S., Brown, B. & Rapholo, M. B. (2004) Costs and benefits of biological control of invasive alien plants: Case studies from South Africa: Working for Water. South African Journal of Science 100(1-2), 113-122.
Winston, R. L., Schwarzländer, M., Hinz, H. L., Day, M. D., Cock, M. J. & Julien, M. H. (2014) Biological control of weeds: a world catalogue of agents and their target weeds. Biological control of weeds: a world catalogue of agents and their target weeds, (Ed. 5).
Zimmermann, H., Moran, C. & Hoffmann, J. (2009) Biological control of tropical weeds using arthropods, Chapter 7: Invasive cactus species (Cactaceae), Cambridge University Press. https://doi.org/10.1017/CBO9780511576348.007.