همزیست های اجباری و اختیاری در جمعیت های مختلف سفیدبالک گلخانه Trialeurodes vaporariorum (Hem.: Aleyrodidae)

نوع مقاله : مقاله کامل، فارسی

نویسندگان

1 پژوهشکده زیست‌فناوری و مهندسی زیستی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

10.61186/jesi.44.1.1

چکیده

: سفیدبالک گلخانه، (Westwood) Trialeurodes vaporariorum یکی از­ آفت­های زیان‌آور سبزیجات و گیاهان زینتی می­باشد. خسارت زیاد این آفت باعث شده تا طراحی برنامه­های تلفیقی مدیریت آفات (IPM) بر مبنای زیست­شناسی و روابط همزیستی آن ضروری به­نظر برسد. از آنجایی که همزیست­های سفیدبالک گلخانه تاکنون در ایران کمتر شناخته شده­اند، در پژوهش پیش­رو تنوع آن­ها در جمعیت­های مختلف سفیدبالک گلخانه مورد بررسی قرار گرفت. بدین منظور، نمونه­برداری از گلخانه­ها و مزارع آلوده­ی مناطق مختلف استان اصفهان انجام شد. سپس برای شناسایی مولکولی گونه­ی سفیدبالک گلخانه و ارزیابی وجود یا عدم وجود گونه­های مختلف همزیست، استخراج DNA  و واکنش زنجیره‌ای پلی‌مرازی (PCR) و در نهایت توالی­یابی ژن­ها انجام شد. همچنین، در مراحل مختلف از سفیدبالک پنبه، tabaci (Gennadius) Bemisia ، به­عنوان شاهد استفاده شد. گونه مورد نظر از لحاظ ریخت‏‌شناسی و توالی ژن سیتوکروم اکسیداز یک (COI) به­عنوان T. vaporariorum شناسایی شد. بررسی تنوع همزیست­ها نشان دادند که همزیست­های Portiera sp. و Arsenophonus sp. در تمام جمعیت­های جمع­آوری شده وجود داشتند. Hamiltonella sp. و Rickettsia sp. در تمام جمعیت­ها به­غیر از جمعیت­های خولنجان و باغ­ابریشم ردیابی شدند. sp. ­  Cardinium  در جمعیت یفران مشاهده شده و Fritschea sp. در جمعیت­های خمینی­شهر، نسیم‌آباد، باغ ابریشم، خولنجان و یفران شناسایی شدند، درحالی‌که باکتری Wolbachia در هیچ­کدام از جمعیت­ها ردیابی نشد. با توجه به کمبود اطلاعات در مورد تنوع همزیستی سفیدبالک گلخانه و همچنین نبود مطالعه­ای در ایران، این پژوهش می­تواند مبنایی برای مطالعات تکمیلی در زمینه­ی همزیستی و شناخت نقش همزیست­ها باشد.

چکیده تصویری

همزیست های اجباری و اختیاری در جمعیت های مختلف سفیدبالک گلخانه Trialeurodes vaporariorum (Hem.: Aleyrodidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Obligate and facultative symbionts in different populations of the greenhouse whitefly, Trialeurodes vaporariorum (Hem.: Aleyrodidae)

نویسندگان [English]

  • Marzieh Kashkouli 1
  • Jahangir Khajehali 2
1 Biotechnology and Bioengineering Research Institute, Isfahan University of Technology, Isfahan, Iran
2 Department of Plant protection, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

The greenhouse whitefly, Trialeurodes vaporariorum (Westwood), is one of the harmful pests of vegetables and ornamental plants. The high damage caused by this pest has made it necessary to design an integrated pest management (IPM) programs based on biology and its symbiotic relationships. Since the symbionts of greenhouse whiteflies are less known so far in Iran, their diversity in different pest populations has been investigated in the upcoming research. For this purpose, sampling was done from contaminated greenhouses and fields of Isfahan province. Then, DNA extraction and polymerase chain reaction (PCR) were performed to assess the presence/absence of symbionts, sequencing of target genes, and molecular identification of the whitefly species. Also, the cotton whitefly, Bemisia tabaci (Gennadius), was used as a control in different stages. The target species was identified as T. vaporariorum based on the morphology and cytochrome oxidase one (COI) gene sequence. Examining the diversity of symbionts showed the presence of Portiera sp. and Arsenophonus sp. in all collected populations. Hamiltonella sp. and Rickettsia sp. were detected in all populations except Kholenjan and Bagh Abrisham. Cardinium sp. has been observed in the population of Yafran and Fritschea sp. was detected in the populations of Khomeini Shahr, Nasim Abad, Kholenjan, Bagh Abrisham, and Yafran, while Wolbachia was not detected in any of the populations. Considering the lack of information about the symbiotic diversity of the greenhouse whitefly and also the lack of studies in Iran, this research can be a basis for further studies in the field of symbiosis and to recognize the role of symbionts.

کلیدواژه‌ها [English]

  • bacterial symbionts
  • Cytochrome Oxidase I (COI)
  • Portiera
  • Arsenophonus

© 2024 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Ayoubi, A., Talebi, A. A., Fathipour, Y. & Mehrabadi, M. (2020) Coinfection of the secondary symbionts, Hamiltonella defensa and Arsenophonus sp. contribute to the performance of the major aphid pest, Aphis gossypii (Hemiptera: Aphididae). Insect Science27(1), 86-98. https://doi.org/10.1111/1744-7917.12603.
Barman, M., Samanta, S., Thakur, H., Chakraborty, S., Samanta, A., Ghosh, A. & Tarafdar, J. (2021) Effect of neonicotinoids on bacterial symbionts and insecticide-resistant gene in whitefly, Bemisia tabaci. Insects, 12(8). https://doi.org/10.3390/insects12080742.
Bi, J. L., Toscano, N. C. & Ballmer, G. R. (2002) Seasonal population dynamics of the greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on strawberries in Southern California. Journal of Economic Entomology, 95(6), 1179–1184. https://doi.org/10.1603/0022-0493-95.6.1179.
Bing, X. L., Yang, J., Fein, E. Z., Wang, X. W. & Liu, S. S. (2013) Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Applied and Environmental Microbiology, 79(2), 569–575. https://doi.org/10.1128/AEM.03030-12.
Brumin, M., Kontsedalov, S. & Ghanim, M. (2011) Rickettsia influences thermotolerance in the whitefly Bemisia tabaci B biotype. Insect Science, 18(1), 57–66. https://doi.org/10.1111/j.1744-7917.2010.01396.x.
Cass, B. N., Mozes-Daube, N., Iasur-Kruh, L., Bondy, E. C., Kelly, S. E., Hunter, M. S. & Zchori-Fein, E. (2014) Bacterial endosymbionts in field-collected samples of Trialeurodes sp. nr. abutiloneus (Hemiptera: Aleyrodidae). Research in Microbiology, 165(2), 77–81. https://doi.org/10.1016/j.resmic.2014.01.005.
Chiel, E., Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Katzir, N., Inbar, M. & Ghanim, M. (2007) Biotype-dependent secondary symbiont communities in sympatric populations of Bemisia tabaci. Bulletin of Entomological Research, 97(4), 407–413. 10.1017/S0007485307005159.
Choi, W. Il, Lee, E. H., Choi, B. R., Park, H. M. & Ahn, Y. J. (2003) Toxicity of plant essential oils to Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Journal of Economic Entomology, 96(5), 1479–1484. 10.1603/0022-0493-96.5.1479.
Dale, C. & Moran, N. A. (2006) Molecular interactions between bacterial symbionts and their hosts. Cell, 126(3), 453–465. 10.1016/j.cell.2006.07.014.
Dângelo, R. A. C., Michereff-Filho, M., Inoue-Nagata, A. K., da Silva, P. S., Chediak, M. & Guedes, R. N. C. (2021) Area-wide insecticide resistance and endosymbiont incidence in the whitefly Bemisia tabaci MEAM1 (B biotype): A Neotropical context. Ecotoxicology, 30(6), 1056–1070. https://doi.org/10.1007/s10646-021-02432-3.
Dedeine, F., Vavre, F., Fleury, F., Loppin, B., Hochberg, M. E. & Boulétreau, M. (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proceedings of the National Academy of Sciences of the United States of America, 98(11), 6247–6252. https://doi.org/10.1073/pnas.1013042.
Engel, P. & Moran, N. A. (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. 10.1111/1574-6976.12025.
Erdogan, C., Velioglu, A. S., Gurkan, M. O., Denholm, I. & Moores., G. D. (2021) Detection of resistance to pyrethroid and neonicotinoid insecticides in the greenhouse whitefly, Trialeurodes vaporariorum (Westw.)(Hemiptera: Aleyrodidae). Crop Protection, 146, 105661. https://doi.org/10.1016/j.cropro.2021.105661.
European and Mediterranean Plant Protection Organization. (2004) Diagnostic protocols for regulated pests-Bemisia tabaci. EPPO Bulletin, 34(2), 281–288.
Ferrari, J. & Vavre, F. (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1569), 1389–1400. 10.1098/rstb.2010.0226.
Frago, E., Dicke, M. & Godfray, H. C. J. (2012) Insect symbionts as hidden players in insect-plant interactions. Trends in Ecology and Evolution, 27(12), 705–711. http://dx.doi.org/10.1016/j.tree.2012.08.013.
Frohlich, D. R., Torres-Jerez, I., Bedford, I. D., Markham, P. G. & Brown, J. K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology, 8(10), 1683–1691. 10.1046/j.1365-294x.1999.00754.x.
Fukatsu, T. & Hosokawa, T. (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Applied and Environmental Microbiology, 68(1), 389–396. 10.1128/AEM.68.1.389-396.2002.
Gao, R. R., Zhang, W. P., Wu, H. T., Zhang, R. M., Zhou, H. X., Pan, H. P., Zhang, Y. J., Brown, J. K. & Chu D. (2014) Population Structure of the Greenhouse Whitefly, Trialeurodes vaporariorum (Westwood), an Invasive Species from the Americas, 60 Years after Invading China. International Journal of Molecular Sciences, 15(8), 13388–13400. 10.3390/ijms150813514.
Gawel, N. J. & Jarret, R. L. (1991) A Modified CTAB DNA Extraction Procedure for Musa and Ipomoea. Plant Molecular Biology Reporter, 9(3), 262–266.
Ghanim, M. & Kontsedalov, S. (2009) Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Management Science, 65(9), 939–942. 10.1002/ps.1795.
Gorsane, F., Ben Halima, A., Ben Khalifa, M., Bel-Kadhi, M. S. & Fakhfakh, H. (2011) Molecular characterization of Bemisia tabaci populations in tunisia: Genetic structure and evidence for multiple acquisition of secondary symbionts. Environmental Entomology, 40(4), 809–817. 10.1603/EN10162.
Gottlieb, Y., Zchori-Fein, E., Mozes-Daube, N., Kontsedalov, S., Skaljac, M., Brumin, M., Sobol, I., Czosnek H., Vavre, F., Fleury F. & Ghanim M. (2010)  The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species . Journal of Virology, 84(18), 9310–9317. 10.1128/JVI.00423-10.
Haine, E. R. (2008) Symbiont-mediated protection. Proceedings of the Royal Society B: Biological Sciences, 275(1633), 353–361. 0.1098/rspb.2007.1211.
Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windowsprogram for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hill, B. G. (1969) A morphological comparison between two species of whitefly, Trialeurodes vaporariorum (Westw.) and Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae) which occur on tobacco in the Transvaal. Phytophylactica, 1(34), 127–146.
Himler, A. G., Adachi-Hagimori, T., Bergen, J. E., Kozuch, A., Kelly, S. E., Tabashnik, B. E., Chiel, E., Duckworth, V. E., Dennehy, T. J., Zchori-Fein, E. & Hunter, M. S. (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science, 332(6026), 254–256. https://doi.org/10.1126/science.1199410.
Kapantaidaki, D. E., Ovčarenko, I., Fytrou, N., Knott, K. E., Bourtzis, K., Tsagkarakou, A. & Markow, T. (2015) Low levels of mitochondrial DNA and symbiont diversity in the worldwide agricultural pest, the greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Journal of Heredity, 106(1), 80–92. 10.1093/jhered/esu061.
Karamipour, N., Fathipour, Y. & Mehrabadi, M. (2021) Removal of gut symbiotic bacteria negatively affects life history traits of the shield bug, Graphosoma lineatum. Ecology and Evolution, 11(6), 2515-2523. https://doi.org/10.1002/ece3.7188.
Karamipour, N., Mehrabadi, M. & Fathipour, Y. (2016) Gammaproteobacteria as essential primary symbionts in the striped shield bug, Graphosoma Lineatum (Hemiptera: Pentatomidae). Scientific Reports, 6(September). http://dx.doi.org/10.1038/srep33168.
Kareem, A. A. (2018) Population genetic structure and symbionts of whitefly Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae), in the UK and Iraq. Newcastle University.
Kashkouli, M., Castelli, M., Floriano, A. M., Bandi, C., Epis, S., Fathipour, Y., Mehrabadi, M. & Sassera, D. (2021a) Characterization of a novel Pantoea symbiont allows inference of a pattern of convergent genome reduction in bacteria associated with Pentatomidae. Environmental Microbiology, 23(1), 36–50. 10.1111/1462-2920.15169.
Kashkouli, M., Fathipour, Y. & Mehrabadi, M. (2020) Habitat visualization, acquisition features and necessity of the gammaproteobacterial symbiont of pistachio stink Bug, Acrosternum heegeri (Hem.: Pentatomidae). Bulletin of Entomological Research, 110(1), 22–33. 10.1017/S0007485319000245.
Kashkouli, M., Fathipour, Y. & Mehrabadi, M. (2019a) Heritable Gammaproteobacterial symbiont improves the fitness of Brachynema germari Kolenati (Hemiptera: Pentatomidae). Environmental Entomology, 48(5), 1079–1087. 10.1093/ee/nvz089.
Kashkouli, M., Fathipour, Y. & Mehrabadi, M. (2019b) Potential management tactics for pistachio stink bugs, Brachynema germari, Acrosternum heegeri and Acrosternum arabicum (Hemiptera: Pentatomidae): high temperature and chemical surface sterilants leading to symbiont suppression. Journal of Economic Entomology 112(1), 244–254. 0.1093/jee/toy324.
Kashkouli, M., Fathipour, Y. & Mehrabadi, M. (2021b) The crucial role of the endosymbiont Pantoea sp. in morphology and mating of the pistachio green stink bug, Brachynema germari (Hemiptera: Pentatomidae). Journal of Agricultural Science and Technology 23(1), 137–148.
Kashkouli, M., Mehrabadi, M. & Fathipour, Y. (2021c) The symbionts. In Omkar (Ed.), Microbial Approaches for Insect Pest Management (pp. 217–269).
Kontsedalov, S., Zchori-Fein, E., Chiel, E., Gottlieb, Y., Inbar, M. & Ghanim, M. (2008) The presence of Rickettsia is associated with increased susceptibility of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides. Pest management Science 64(11), 789–792. 10.1002/ps.1595.
Lei, T., Zhao, J., Wang, H. L., Liu, Y. Q. & Liu, S. S. (2021) Impact of a novel Rickettsia symbiont on the life history and virus transmission capacity of its host whitefly (Bemisia tabaci). Insect Science 28(2), 377–391. https://doi.org/10.1111/1744-7917.12797.
Liu, Y. H., Shah, M. M. R., Song, Y. & Liu, T.-X. (2020a) Host plant affects symbiont abundance in Bemisia tabaci (Hemiptera: Aleyrodidae). Insects 11(8), 501. 10.3390/insects11080501.
Liu, Y., Fan, Z. Y., An, X., Shi, P. Q., Ahmed, M. Z. & Qiu, B. L. (2020b) A single-pair method to screen Rickettsia-infected and uninfected whitefly Bemisia tabaci populations. Journal of Microbiological Methods 168, 105797. https://doi.org/10.1016/j.mimet.2019.105797.
Mahadav, A., Gerling, D., Gottlieb, Y., Czosnek, H. & Ghanim, M. (2008) Parasitization by the wasp Eretmocerus mundus induces transcription of genes related to immune response and symbiotic bacteria proliferation in the whitefly Bemisia tabaci. BMC Genomics 9, 1–11. 10.1186/1471-2164-9-342.
Manzano, M. R. & van Lenteren, J. C. (2009) Life history parameters of Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) at different environmental conditions on two bean cultivars. Neotropical Entomology 38(4), 452–458. 10.1590/s1519-566x2009000400002.
Martin, J. H. (1987) An identification guide to common whitefly pest species of the world (Homoptera Aleyrodidae). Tropical Pest Management 33(4), 298–322.
Marubayashi, J. M., Kliot, A., Yuki, V. A., Rezende, J. A. M., Krause-Sakate, R., Pavan, M. A. & Ghanim, M. (2014) Diversity and localization of bacterial endosymbionts from whitefly species collected in Brazil. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0108363.
McKenzie, C. L., Hodges, G., Osborne, L. S., Byrne, F. J. & Shatters Jr, R. G. 2012). Distribution of Bemisia tabaci (Hemiptera: Aleyrodidae) Biotypes in North America after the Q Invasion. Journal of Economic Entomology 105(3), 753–766. 10.1603/ec11337.
Mohammed, M. A., Karaca, M. M., Döker, İ. & Karut, K. (2020) Monitoring insecticide resistance and endosymbiont composition in greenhouse populations of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) from Mersin, Turkey. Phytoparasitica 48(4), 659–672. 10.1007/s12600-020-00812-9.
Moran, N. A., McCutcheon, J. P. & Nakabachi, A. (2008) Genomics and evolution of heritable bacterial symbionts. Annual Review of Genetics 42, 165–190. 10.1146/annurev.genet.41.110306.130119.
Murray, M. G. & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8(19), 4321–4326. 10.1093/nar/8.19.4321.
Nirgianaki, A., Banks, G. K., Frohlich, D. R., Veneti, Z., Braig, H. R., Miller, T. A., Bedford, I. D., Markham, P. G., Savakis, Ch. & Kostas B. (2003) Wolbachia infections of the whitefly Bemisia tabaci. Current Microbiology 47(2), 93–101. 10.1007/s00284-002-3969-1.
Paredes-Montero, J. R., Zia-Ur-Rehman, M., Hameed, U., Haider, M. S., Herrmann, H. W. & Brown, J. K. (2020) Genetic variability, community structure, and horizontal transfer of endosymbionts among three Asia II-Bemisia tabaci mitotypes in Pakistan. Ecology and Evolution 10(6), 2928–2943. https://doi.org/10.1002/ece3.6107.
Patel, C., Srivastava, R. M. & Samraj, J. M. (2022) Comparative study of morphology and developmental biology of two agriculturally important whitefly species Bemisia tabaci (Asia II 5) and Trialeurodes vaporariorum from North-Western Himalayan region of India. Brazilian Archives of Biology and Technology 65. 10.1590/1678-4324-2022210034.
Prado, S. S., Hung, K. Y., Daugherty, M. P. & Almeida, R. P. P. (2010) Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Applied and Environmental Microbiology 76(4), 1261–1266. 10.1128/AEM.02034-09.
Raina, H. S., Rawal, V., Singh, S., Daimei, G., Shakarad, M. & Rajagopal, R. (2015) Elimination of Arsenophonus and decrease in the bacterial symbionts diversity by antibiotic treatment leads to increase in fitness of whitefly, Bemisia tabaci. Infection, Genetics and Evolution 32(March), 224–230. http://dx.doi.org/10.1016/j.meegid.2015.03.022.
Santos-Garcia, D., Farnier, P. A., Beitia, F., Zchori-Fein, E., Vavre, F., Mouton, L., Moya, A., Amparo, L. & Francisco J. S. (2012) Complete genome sequence of “Candidatus portiera aleyrodidarum” BT-QVLC, an Obligate symbiont that supplies amino acids and carotenoids to Bemisia tabaci. Journal of Bacteriology, 194(23), 6654–6655. 10.1128/JB.01793-12.
Siddiqui, J. A., Khan, M. M., Bamisile, B. S., Hafeez, M., Qasim, M., Rasheed, M. T., Rasheed, M. A., Ahmad, S., Shahid, M. I. & Xu, Y. (2022) Role of insect gut microbiota in pesticide degradation: A Review. Frontiers in Microbiology 13(May). https://doi.org/10.3389/fmicb.2022.870462.
Skaljac, M., Kanakala, S., Zanic, K., Puizina, J., Pleic, I. L. & Ghanim, M. (2017) Diversity and phylogenetic analyses of bacterial symbionts in three whitefly species from Southeast Europe. Insects 8(4), 113. https://doi.org/10.3390/insects8040113.
Skaljac, M., Zanic, K., Ban, S. G., Kontsedalov, S. & Ghanim, M. (2010) Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiology 10(1). https://doi.org/10.1186/1471-2180-10-142.
Su, Q., Zhou, X. & Zhang, Y. (2013) Symbiont-mediated functions in insect hosts. Communicative and Integrative Biology 6(3), e23804. 10.4161/cib.23804.
Sudakaran, S., Kost, C. & Kaltenpoth, M. (2017) Symbiont acquisition and replacement as a source of ecological innovation. Trends in Microbiology 25(5), 375–390. http://dx.doi.org/10.1016/j.tim.2017.02.014.
Thao, M. L. L., Baumann, L., Hess, J. M., Falk, B. W., Ng, J. C. K., Gullan, P. J. & Baumann, P. (2003) Phylogenetic evidence for two new insect-associated chlamydia of the family Simkaniaceae. Current Microbiology 47(1), 46–50. 10.1007/s00284-002-3953-9.
Trienens, M. & Beukeboom, L. W. (2019) Symbionts in insect biology and pest control – an introduction. Entomologia Experimentalis et Applicata 167(3), 153–155. 10.1111/eea.12771.
Wang, H. L., Lei, T., Xia, W. Q., Cameron, S. L., Liu, Y. Q., Zhang, Z. & Wang, X. W.(2019) Insight into the microbial world of Bemisia tabaci cryptic species complex and its relationships with its host. Scientific Reports 9(1), 1–15. 10.1038/s41598-019-42793-8.
Wang, Q., Luo, C. & Wang, R. (2023) Insecticide resistance and its management in two invasive cryptic species of Bemisia tabaci in China. International Journal of Molecular Sciences 24(7). https://doi.org/10.3390/ijms24076048.
Wang, Y. Bin, Ren, F. R., Yao, Y. L., Sun, X., Walling, L. L., Li, N. N . & Luan, J. B. (2020) Intracellular symbionts drive sex ratio in the whitefly by facilitating fertilization and provisioning of B vitamins. ISME Journal 14(12), 2923–2935. https://doi.org/10.1038/s41396-020-0717-0.
Wang, Z., Yan, H., Yang, Y. & Wu, Y. (2010) Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science 66(12), 1360–1366. 10.1002/ps.2023.
Watanabe, L. F. M., Bello, V. H., De Marchi, B. R., Sartori, M. M. P., Pavan, M. A. & Krause-Sakate, R. (2018) Performance of Bemisia tabaci MEAM1 and Trialeurodes vaporariorum on Tomato chlorosis virus (ToCV) infected plants. Journal of Applied Entomology 142(10), 1008–1015. https://doi.org/10.1111/jen.12559.
Zchori-Fein, E. & Brown, J. K. (2002) Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Annals of the Entomological Society of America 95(6), 711–718. https://doi.org/10.1603/0013-8746(2002)095[0711:DOPAWB]2.0.CO;2.