تاثیر پتاسیم و سالیسلیک اسید روی عملکرد شکارگر: تجزیه و تحلیل جدول زندگی Typhlodromips caspiansis Denmark &Daneshvar (Acari: Phytoseiidae)

نوع مقاله : مقاله کامل، انگلیسی

نویسندگان

1 گروه گیاهپزشکی، دانشکده علوم کشاورزی، دانشگاه محقق اردبیلی، اردبیل

2 مرکز تحقیقات مرکبات و میوه های نیمه گرمسیری ، رامسر، ایران

10.61186/jesi.45.1.10

چکیده

کنه‌ی قرمز مرکبات، Panonychus citri (McGregor) می‌تواند آسیب شدیدی به درختان مرکبات وارد کند. Typhlodromips caspiansis کنه‌ی شکارگر بومی این آفت است که اخیراً همراه با کنه‌ی قرمز مرکبات در استان‌های شمالی ایران گزارش شده است.  در مطالعه‌ی حاضر، القای مقاومت در نهال های مرکبات دو ساله پس از محلول‌پاشی با اسید سالیسیلیک+پتاسیم، در برابر P. citri انجام شد. همچنین اثر پایین به بالای اسید سالیسیلیک+پتاسیم بر پارامترهای رشد جمعیت T. caspiansis تغذیه شده روی  P. citri پرورش‌یافته روی گیاهان تیمار شده بررسی شد. نهال‌های دو ساله‌ی مرکبات با محلول‌ اسید سالیسیلیک (1میلی مولار) +پتاسیم (0.02 گرم/لیتر) پاشش شدند و محلول‌پاشی با آب به‌عنوان شاهد بود. میزان بقا و مدت مراحل نابالغ، طول عمر و باروری بالغین T. caspiansis در تیمار پتاسیم+سالیسیلیک اسید در شرایط اتاقک رشد (2 ± 25 درجه‌ی سلسیوس، رطوبت نسبی 5 ± 65 درصدبا طول روز 16 ساعت) ثبت شد. تفاوت معنی‌داری در طول دوره‌ی تخم و لارو T. caspiansis تغذیه شده با P. citri پرورش یافته با کود پتاسیم+سالیسیلیک اسید و شاهد مشاهده نشد. در مقایسه با شاهد، این تیمار طول دوره‌ی پوره‌ی سن دو را طولانی‌تر کرد. نرخ خالص تولیدمثلی (R0)، نرخ ذاتی افزایش جمعیت (r) و نرخ متناهی افزایش جمعیت (λ) کنه‌ی T. Caspiansis تفاوت معنی‌داری بین تیمارپتاسیم+سالیسیلیکاسید و شاهد نشان نداد، در حالی‌که میانگین طول یک نسل (T) به‌طور قابل توجهی متفاوت بود. پیش‌بینی می‌شود که یافته‌های این مطالعه و مطالعات قبلی می‌تواند تاثیرات مثبت پتاسیم+سالیسیلیک اسید را در کنترل کنه‌ی قرمز مرکبات فراهم کند. با این حال، مطالعات مزرعه‌ای برای تعیین تأثیر تیمارهای مذکور روی کاهش خسارت این آفت مرکبات و عملکرد شکارگری T. caspiansis روی این آفت مورد نیاز است.

چکیده تصویری

تاثیر پتاسیم و سالیسلیک اسید روی عملکرد شکارگر: تجزیه و تحلیل جدول زندگی Typhlodromips caspiansis Denmark &Daneshvar (Acari: Phytoseiidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of potassium and salicylic acid on predator performance: Life table analysis of Typhlodromips caspiansis Denmark &Daneshvar (Acari: Phytoseiidae)

نویسندگان [English]

  • Zahra Mahpoya 1
  • Jabraeil Razmjou 1
  • Sirus Aghajanzadeh 2
  • Seyed Ali Asghar Fathi 1
  • Mahdi Hassanpour 1
1 Department of Plant Protection, Faculty of Agricultural Science, University of Mohaghegh Ardabili, Ardabil, Iran
2 Citrus and Subtropical Fruits Research Center, Ramsar, Iran
چکیده [English]

The citrus red mite, Panonychus citri (McGregor), can cause severe damage to citrus trees. Typhlodromips caspiansis Denmark & Daneshvar is an indigenous predatory mite that was recently reported in association with P. citri in the Northern provinces of Iran. This study aimed to investigate the bottom-up effect of potassium and salicylic acid on the development and life table parameters of T. caspiansis on P. citri reared under host-plant treatment. Two-year-old citrus seedlings were sprayed with a solution containing potassium fertilizer (0.02 g/L) plus salicylic acid (1 mM). The survival rate and duration of the immature stages of the predator, as well as the longevity of adults and fecundity, were recorded. There was no significant difference in the egg and larval duration of T. caspiansis fed on P. citri reared on potassium+salicylic acid-treated and untreated (control) citrus seedlings. In comparison to the control, the duration of deutonymph was prolonged by the application of this treatment. Also, the longevity of females that came from immatures under host-plant treatment. The net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) of T. caspiansis did not show significant differences between potassium+salicylic acid-treated and untreated citrus seedlings; while the mean generation time (T) differed significantly. It can be concluded from the previous study and the present study that the positive effects of potassium+salicylic acid on P. citri control entail no negative outcomes regarding predator fitness. However, further field-based studies are needed for more realistic conclusions.

کلیدواژه‌ها [English]

  • Tri-trophic interactions
  • Panonychus citri
  • Two-sex life-table
  • Citrus
  • Bottom-up effect

© 2025 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Aguilera, G., Riggi, L., Miller, K., Roslin, T. & Bommarco, R. (2021) Organic fertilisation enhances generalist predators and suppresses aphid growth in the absence of specialist predators. Journal of Applied Ecology 58, 1455–1465. https://doi.org/10.1111/1365-2664.13862.
Alakhdar, H. H. & Abou-Setta, M. M. (2021) Efficacy of three elicitors on Tetranychus urticae Koch (Acari: Tetranychidae) infestation level and its associated natural enemies on Phaseolus vulgaris L. and their effects on plant parameters. Phytoparasitica. 49:935–942. https://doi.org/10.1007/s12600-021-00931-x.
Barclay, H. J. (1982) Models for pest control using predator release, habitat management and pesticide release in combination. Journal of Applied Ecology 19(2):337-348. https://doi.org/10.2307/2403471.
Borer, E. T., Halpern, B. S. & Seabloom, E. W. (2006) Asymmetry in community regulation: Effects of predators and productivity. Ecology 87(11), 2813-2820. https://doi.org/10.1890/0012-9658.
Chen, Y., Olson, D. M. & Ruberson, J. R. (2010) Effects of nitrogen fertilization on tritrophic interactions. Arthropod-Plant Interaction 4, 81-94. https://doi.org/10.1007/s11829-010-9092-5.
Chi, H. (1988) Life-table analysis incorporating both sexes and variable development rate among individuals. Environmental Entomology 17, 26–34. https://doi.org/10.1093/ee/17.1.26.
Chi, H. (2022) TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis; National Chung Hsing University: Taichung, Taiwan, 2022; Available online: http://140.120.197.173/Ecology/ (accessed on 8 March 2021).
Chi, H. & Liu, H. (1985) Two new methods for study of insect population ecology. Bulletin of the Institute of Zoology, Academia Sinica. 24, 225–240.
Childers, C. C. & Fasulo, T. R. (2009) Citrus red Mite, IFAS Extension, ENY817 University of Florida. (https://ufdcimages.uflib.ufl.edu/IR/00/00/46/19/00001/CH02100.pdf).
Cokendolpher, J. C., Zamani, A. & Snegovaya, N. Y. (2019) Overview of arachnids and arachnology in Iran. Journal of Insect Biodiversity and Systematics 5(4), 301–367. http://zoobank.org/References/25A30039-DA91-4E19-AD93-50098BB2BB61.
Daugherty, M. P., Briggs, C. J. & Welter, S. C. (2007) Bottom-up and top-down control of pear psylla (Cacopsylla pyricola): Fertilization, plant quality, and the efficacy of the predator Anthocoris nemoralis. Biological Control 43(3), 257-264. https://doi.org/10.1016/j.biocontrol.2007.09.001.
Efron, B. & Tibshirani, R. J. (1994) An Introduction to the Bootstrap; Chapman and Hall/CRC Press: New York, NY, USA.
El-Doksh, R. A. A., EI-Nagar, J. B. & Hegazy, W. H. (2005) Effect of potassium fertilizer on the population of certain sucking insects and their associated predators in cotton fields. Journal of Plant Protection and Pathology 30(9), 5607-5615. https://doi.org/10.21608/jppp.2005.239025.
Erb, M., Züst, T. & Robert, C. A. M. (2021) Using plant chemistry to improve interactions between plants, herbivores and their natural enemies: challenges and opportunities. Current Opinion in Biotechnology 70, 262-265. https://doi.org/10.1016/j.copbio.2021.05.011.
Fallahpour, F., Hosseini, M., Ghorbani, R. & NassiriMahallati, M. (2013) The effect of canola fertilization on predation and development of Aphidoletes aphidomyza on Lipaphis erysimi. Conference of Biological Control in Agriculture and Natural Resources, University of Tehran, 27-28.
Feng, J. L., Zhang, J., Yang, J., Zou, L. P., Fang, T. T., Xu, H. L. & CAI, Q. N. (2021) Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Bulletin of Entomological Research. https://doi.org/10.1017/S0007485321000237.
Filgueiras, C. C., Martins, A. D., Pereira, R. V. & Willett, D. S. (2019) The Ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. International Journal of Molecular Sciences 20(23), 5851. https://doi.org/10.3390/ijms20235851.
Garratt, M. P. D., Wright, D. J. & Leather, S. R. (2011) the effects of farming system and fertilisers on pests and natural enemies: a synthesis of current research. Agriculture, Ecosystems & Environment 141(3-4), 261-270. https://doi.org/10.1016/j.agee.2011.03.014.
Gharekhani, G., Salehi, F., Shirazi, J. & Vaez, N. (2020) Tri-trophic interactions among nitrogen-fertilized tomato cultivars, the tomato fruit worm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and the ectoparasitoid, Habrobracon hebetor (Say) (Hymenoptera: Braconidae). Egyptian Journal of Biological Pest Control 30, 6. https://doi.org/10.1186/s41938-019-0199-4.
Hajizadeh, J. &Nazari, M. (2012) A checklist and key for the Phytoseiid mites (Acari: Phytoseiidae) of citrus orchards in Iran, with a new record for Iranian Phytoseiid mites. Systematic and Applied Acarology 17(4), 388-396. https://doi.org/10.11158/saa.17.4.7.
Han, P., Bearez, P., Adamowicz, S., Lavoir, A. V., Amiens-Desneux, E. & Desneux, N. (2015) Nitrogen and water limitations in tomato plants trigger negative bottom-up effects on the omnivorous predator Macrolophus pygmaeus. Journal of Pest Science 88, 685–691. https://doi.org/10.1007/s10340-015-0662-2.
Han, P., Lavoir, A. V., Rodriguez-Saona, C. & Desneux, N. (2022) Bottom-up forces in agroecosystems and their potential impact on arthropod pest management. Annual Review of Entomology 67, 239–59. https://doi.org/10.1146/annurev-ento-060121-060505.
Hasanuzzaman, M., Bhuyan, M. H. M. B., Nahar, K., Hossain, M. S., Mahmud, J. A., Hossen, M. S., Masud, A. A. C. & Moumita, F. M. (2018) Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8, 31. https://doi.org/10.3390/agronomy8030031.
Hill, M. P., Macfadyen, S., Nash, M. A. (2017) Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks. PeerJ  5, e4179. https://doi.org/10.7717%2Fpeerj.4179.
Horgan, F. G., CrisolMartínez, E., Stuart, A. M., Bernal, C. C., de Cima Martín, E., Almazan, M. L. P., Ramal, A. F. (2019) Effects of vegetation strips, fertilizer levels and varietal resistance on the integrated management of arthropod biodiversity in a tropical rice ecosystem. Insects 10 (10), 328. https://doi.org/10.3390/insects10100328.
Huang, Y. B. & Chi, H. (2012) Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Science 19, 263–273. https://doi.org/10.1111/j.1744-7917.2011.01424.x.
Ibanez, F., Suh, J. H., Wang. Y., Rivera, M., Setamou, M. & Stelinski, L. L. (2022) Salicylic acid mediated immune response of Citrus sinensis to varying frequencies of herbivory and pathogen inoculation. BMC Plant Biology 22, 7. https://doi.org/10.1186/s12870-021-03389-5.
Indhumathi, J., Muthukrishnan, N., Durairaj, C., Thavaprakaash, N. & Soundararajan, R. P. (2019) Effect of methyl salicylate on rice leaffolder Cnaphalocrocis medinalis (Guenee), parasitoid Xanthopimpla flavolineata (Cameron) and predator Micraspis sp. Madras Agricultural Journal 106 (1-3), 1. https://doi.org/10.1007/s13744-020-00771-0.
Jafarbeigi, F., Samih, M. A., Alaei, H. & Shirani, H. (2020) Induced tomato resistance against Bemisia tabaci triggered by salicylic acid, β-aminobutyric acid, and Trichoderma. Neotropical Entomology 49, 456–467. https://doi.org/10.1007/s13744-020-00771-0.
Jeer, M., Yele, Y., Sharma, K. C. & Prakash, N. B. (2021) Exogenous application of different silicon sources and potassium reduces pink stem borer damage and improves photosynthesis, yield and related parameters in wheat. Silicon 13, 901–910. https://doi.org/10.1007/s12633-020-00481-7.
Langgut, D. (2017) The citrus route revealed: From Southeast Asia into the Mediterranean. HortScience 52(6), 814–822. http://dx.doi.org/10.21273/HORTSCI11023-16.
Liu, P., Ma, H., Zhu, Q. S., Chen, B. C., GAO, J. & Lin, X. Q. (2016) Research progress of insect adaptability to their host plants. Biological Disaster Science 39, 250–254. https://doi.org/10.16380/j.kcxb.2024.02.013.
Mahpuya, Z, Razmjou, J., Aghajanzadeh, S., Fathi, SA. A. & Hassanpour, M. (2023) Salicylic acid and fertilizers affect the performance of Panonychuscitri (McGregor) (Acari; Tetranychidae) on citrus seedlings. International Journal of Acarology 50(1), 1-9. https://doi.org/10.1080/01647954.2023.2287491.
Mallinger, R. E, Hogg, D. B. & Gratton, C. (2011) Methyl salicylate attracts natural enemies and reduces populations of Soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. Journal of Economic Entomology. 104(1), 115-124. https://doi.org/10.1603/ec10253.
Menezes, C. W. G., Camilo, S. S., Fonseca, A. J., AssisJúnior, S. L., Bispo, D. F. & Soares, M. A. (2014) A dietaalimentar da presa Tenebrio molitor (Coleoptera: Tenebrionidae) podeafetar o desenvolvimento do predador Podisus nigrispinus (Heteroptera: Pentatomidae)? Arquivos do Instituto Biológico 81, 250–256. https://doi.org/10.1590/1808-1657001212012.
Mirab-balou, M. & Alizamani, T. (2022) The effect of nutritional interaction between micronutrient fertilizers and Capsicum annuum L. on the population growth of Aphidoletes aphidimyza Rondani as predator of green peach aphid. Journal of Iranian Plant Protection Research 35(4), 481-494 (in Persian with English abstract). http://dx.doi.org/10.22067/JPP.2021.70745.1028.
Moreno-Delafuente, A., Garzo, E., Fereres, A., Viñuela, E. & Medina, P. (2020) Effects of a salicylic acid analog on Aphis gossypii and its predator Chrysoperla carnea on melon plants. Agronomy 10, 1830. https://doi.org/10.3390/agronomy10111830.
Moursy, F. S., Gad, D. A. M., Adly, D. & Sadek, I. I. (2021) Study the effect of two organic fertilizers, methods of fertilization on productivity, pests and predatory insects associated with eggplant under modified climatic condition. GSC Biological and Pharmaceutical Sciences 16(01), 170–185. https://doi.org/10.30574/gscbps.2021.16.1.0205.
Mwangangi, I. M., Büchi, L., Haefele, S. M., Bastiaans, L., Runo, S. & Rodenburg, J. (2021) Combining host plant defence with targeted nutrition: Key to durable control of hemiparasitic Striga in cereals in sub-Saharan Africa? New Phytologist 230(6), 2164-2178. https://doi.org/10.1111/nph.17271.
Novljan, M., Bohinc, T., Kreiter, S., Döker, I. & Trdan, S. (2023) The indigenous species of predatory mites (Acari: Phytoseiidae) as biological control agents of plant pests in Slovenia. Acarologia 63(4), 1048-1061. https://doi.org/10.24349/0p4s-gjtm.
Omidi, J., Hadizadeh, A. & MohammadiSharif, M. (2016) Species diversity of phytoseiid mites on different ecosystems in Sari district. Journal of Agroecology 7, 461-472. https://doi.org/10.22067/jag.v7i4.28579.
Patt, J. M., Robbins, P. S., Niedz, R. P., McCollum, T. G. & Alessandro, R. (2018) Exogenous application of the plant signalers methyl jasmonate and salicylic acid induces changes in volatile emissions from citrus foliage and influences the aggregation behavior of Asian citrus psyllid (Diaphorina citri), vector of Huanglongbing. PLos One 13(3). e0193724. https://doi.org/10.1371/journal.pone.0193724.
Qayyoum, M. A., Song, Z. W., Zhang, B. X., Li, D. S. (2021) Dispersal mechanism assessment for Panonychus citri (Acari: Tetranychidae) secondary outbreaks. Annals of Entomological Society of America 114(4), 501–510. https://doi.org/10.1093/aesa/saab008.
Rafati-Fard, M., Hajizadeh, J. & Arbabi, M. (2004) Biology of Typhlodromips caspiansis (Acari: Phytoseiidae) predator of some spider mites (Acari: Tetranychidae) under laboratory conditions. Journal of Entomological Society of Iran 24(1), 49-65. (in Persian with English abstract).
Rafatifard, M., Hajizadeh, J. & Arbabi, M. (2004) Biology of Typhlodromips caspiansis (Acari: Phytoseiidae) predator of some spider mites (Acari: Tetranychidae) under laboratory condition. Journal of Entomological Society of Iran 24(1), 49-65. (In Persian with English abstract).
Rahmani, H., Kamali, K. & Faraji, F. (2010) Predatory mite fauna of Phytoseiidae of Northwest Iran (Acari: Mesostigmata). Turkish Journal of Zoology 34, 8. https://doi.org/10.3906/zoo-0902-23.
Rashid, M. M., Jahan, M. & Islam, K. S. (2016) Impact of nitrogen, phosphorus and potassium on brown planthopper and tolerance of its host rice plants. Rice Science 23(3), 119-131. https://doi.org/10.1016/j.rsci.2016.04.001.
Razmjou, J., Moharramipour, S., Fathipour, Y. & Mirhoseini, S. Z. (2006) Effect of cotton cultivar on performance of Aphis gossypii (Hom. Aphididae) in Iran. Journal of Economic Entomology. 99(5), 1820-1825. https://doi.org/10.1603/0022-0493-99.5.1820.
Riggi, L. G. & Bommarco, R. (2019) Subsidy type and quality determine direction and strength of trophic cascades in arthropod food webs in agroecosystems. Journal of Applied Ecology 56(8), 1982-1991. https://doi.org/10.1111/1365-2664.13444.
Rowen, E. K. &Tooker, J. F. (2021) Ground predator activity-density and predation rates are weakly supported by dry-stack cow manure and wheat cover crops in no-till maize. Environmental Entomology 50(1), 46–57. https://doi.org/10.1093/ee/nvaa136.
Santos, A. A., Almeida, L. M., Castro-Guedes, C. F. & Penteado, S. R. C. (2014) Life table analysis and consumption capacity for Harmonia axyridis (Coleoptera: Coccinellidae), feeding on Cinara atlantica (Hemiptera: Aphididae). Florida Entomology. 97, 1702–1709. http://www.jstor.org/stable/24364132.
Singh, A. & Sarkar, S. (2021) Effect of excess use of fertilizers on insect/pest infestation in Oryza sativa: A review. Journal of Entomology and Zoology Studies 9(5), 246-252. https://doi.org/10.22271/j.ento.2021.v9.i5c.8834.
Soltaniyan, A., Kheradmand, K., Fathipour, Y. & Shirdel, D. (2020) Supplementation of natural prey with pollen grains exerts an influence on the life table parameters of Neoseiulus californicus. Bulletin of Entomological Research. 1–7. https://doi.org/10.1017/S000748532000005X.
Tuan, S. J., Lee, C. C. & Chi, H. (2014) Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Management Science 70, 805–13. https://doi.org/10.1002/ps.3618.
Turlings, T. C. J. & Wackers, F. (2004) Recruitment of predators and parasitoids by herbivore-injured plants. Advances in Chemical Ecology 2, 21-75. https://doi.org/10.1017/CBO9780511542664.003.
Ullah, M. I., Riaz, M., Arshad, M., Khan, A. H., Afzal, M., Khalid, S., Mehmood, N., Ali, S., Khan, A. M., Zahid, S. M. A. & Riaz, M. (2019) Application of organic fertilizers affect the Citrus leafminer, Phyllocnistis citrella (Lepidoptera: Gracillariidae) infestation and citrus canker disease in Nursery plantations. International Journal of Insect Science. https://doi.org/10.1177/1179543319858634.
Urbaneja, A., Grout, T. G., Gravena, S., Wu, F., Cen, Y. & Stansly, P. A. (2020) Citrus Pests in a Global World. The Genus Citrus. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812163-4.00016-4.
Vieira, D. L., de Oliveira Barbosa, V., de Souza, W. C. O., da Silva, J. G., Malaquias, J. B. & de Luna Batista, J. (2016) Potassium silicate-induced resistance against blackfly in seedlings of Citrus reticulata. Fruits 71(1), 49-55. https://doi.org/10.1051/fruits/2015047.
Walde, S. J. (1995) How quality of host plant affects a predator-prey interaction in biological control. Ecology 76 (4), 1206–1219. https://doi.org/10.2307/1940927.
Wang, M., Zheng, Q., Shen, Q. & Guo, S. (2013) The critical role of potassium in plant stress response. International Journal of Molecular Sciences. 14, 7370-7390. https://doi.org/10.3390%2Fijms14047370.
War, A. R., Hussain, B. & Sharma, H. C. (2013) Induced resistance in groundnut by jasmonic acid and salicylic acid through alteration of trichome density and oviposition by Helicoverpa armigera (Lepidoptera: Noctuidae). AOB Plants. 5: plt 053. https://doi.org/10.1093%2Faobpla%2Fplt053.
Yali, M. P. & Sattari_Nassab, R. (2020) Evaluating the biological control capability of Coccinella septempunctata on canola plants treated with humic acid and salicylic acid via functional response experiments. International Journal of Tropical Insect Science. 40, 1031–1041. https://doi.org/10.1007/s42690-020-00162-3.
Yang, Y., Li, W., Xie, W., Wu, Q., Xu, B., Wang, S., Li, C. & Zhang, Y. (2014) Development of Bradysia odoriphaga (Diptera: Sciaridae) as affected by humidity: An age–stage, two-sex, life-table study. Applied Entomoloy and Zoology. 50, 3–10. https://doi.org/10.1007/s13355-014-0295-6.
Yang, Y., Liu, K., Han, H., Xu, H., Zhang, F., Zheng, X., Tian, J., Wang, G., Chen, G. & Lu, Z. (2016) Impacts of nitrogen fertilizer on major insect pests and their predators in transgenic BT rice lines T2A-1 and T1C-19. Entomologia Experimentalis et Applicata. 160, 281–291. https://doi.org/10.1111/eea.12479.
Zhang, Z. Y., Ali, M. W., Saqib, H. S. A., Liu, S. X., Yang, X., Li, Q. & Zhang, H. (2020) A shift pattern of bacterial communities across the life stages of the citrus red mite, Panonychus citri. Frontiers in Microbiology. 11:1620. https://doi.org/10.3389/fmicb.2020.01620.
Zörb, C., Senbayram, M. & Edgar, P. (2014) Potassium in agriculture – Status and perspectives. Journal of Plant Physiology 171(9), 656–669. https://doi.org/10.1016/j.jplph.2013.08.008.