زیست‌شناسی و فعالیت آنزیم‌های گوارشی پروتئاز و آمیلاز سوسک چهارلکه‌ای حبوبات Callosobruchus maculatus (Coleoptera: Chrysomelidae) روی ارقام مختلف ماش

نوع مقاله : مقاله کامل، فارسی

نویسندگان

گروه گیاهپزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

چکیده

سوسک چهارلکه‌ای حبوبات، Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae)،یکی از آفات مهم دانه حبوبات در ایران و اغلب کشورهای جهان می‌باشد. بررسی مقاومت ارقام حبوبات نسبت به این حشره می‌تواند در کاهش خسارت آفت مفید باشد. در این پژوهش، مقاومت دانه پنج رقم مختلف ماش (سخاوت، زربخش، پرتو، ازبک و افغان) با بررسی پارامترهای زیستی و فعالیت آنزیم‌های گوارشی پروتئاز و آمیلاز سوسک چهارلکه‌ای حبوبات در دمای 1± 28 درجهسلسیوس، رطوبت نسبی 5 ± 65 درصدو 24 ساعتتاریکی ارزیابی شد. پس از تخم‌گذاری حشرات بالغ، دانه‌های ماش حاوی یک عدد تخم به صورت انفرادی به ظروف پتری 6 سانتی‌متری منتقل و طول دوره قبل از بلوغ، درصد بقای افراد نابالغ، زادآوری و طول عمر حشرات کامل نر و ماده روی هر رقم بررسی شد. نتایج به دست آمده از زیست‌شناسی و پارامترهای جدول زندگی حشره با روش دوجنسی سن‌مرحله رشدی تجزیه شدند. بر اساس نتایج به دست آمده، درصد زنده‌مانی و طول دوره‏ی مراحل نابالغ روی رقم‌های مختلف ماش تفاوت معنی‌داری نداشت. در میان ارقام ماش مورد بررسی، زادآوری سوسک‌های ماده روی رقم پرتو (21/69 تخم) کمتر از سایر رقم‌هابود. طولانی‌ترین دوره تخمگذاری آفت روی رقم زربخش (33/5 روز) و کوتاه‌ترین آن روی رقم ازبک (54/4 روز) به دست آمد. با این حال، نرخ خالص تولید مثل (R0)، نرخ ذاتی افزایش جمعیت (r) و نرخ متناهی افزایش جمعیت (λ) روی رقم‌های مختلف ماش تفاوت معنی‌داری نداشت. کمترین فعالیت آنزیم‌های گوارشی آمیلاز و پروتئاز لاروهای سن چهارم روی رقم سخاوت به دست آمد. مطابق با یافته‌های به دست آمده از پژوهش حاضر، تفاوتی در حساسیت و مقاومت رقم‌های ماش مورد بررسی نسبت به سوسک چهارلکه‌ای حبوبات مشاهده نشد.

چکیده تصویری

زیست‌شناسی و فعالیت آنزیم‌های گوارشی پروتئاز و آمیلاز سوسک چهارلکه‌ای حبوبات Callosobruchus maculatus (Coleoptera: Chrysomelidae) روی ارقام مختلف ماش

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Life history and digestive protease and amylase activity of the cowpea weevil, Callosobruchus maculatus (Coleoptera: Chrysomelidae) on different green gram cultivars

نویسندگان [English]

  • Bahram Naseri
  • Aryan Ebadi
  • Zahra Rezaei
Department of Plant Protection, Faculty of Agricultural Sciences & Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

The cowpea weevil,Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) is one of the important pests of stored legume grains in Iran and many countries of the world. Investigation of resistance status of legume grains to C. maculatus infestation can be helpful in minimizing its severe damage. In this research, we studied the resistance of five green gram cultivars (Sekhavat, Zarbakhsh, Parto, Uzbek, and Afghan) to C. maculatus using its life history parameters and digestive protease and amylase activity at 28 ± 1°C, 65 ± 5% relative humidity, and 24 h darkness. After oviposition of adult weevils, green gram seeds containing one egg were individually transferred to 6 cm Petri dishes, and the pre-adult period, the survival percentage of immature individuals, fecundity and longevity of male and female insects on each cultivar were investigated. The results obtained from the life history and life table parameters of the insect were analyzed by age-stage, two-sex method. According to obtained results, there was no significant difference in the percentage of survival and the length of the immature stages on different cultivars of green gram. Among the examined cultivars, fecundity of female weevils on cultivar Parto (69.21 eggs) was lower than on other tested cultivars. The longest oviposition period was obtained on cultivar Zarbakhsh (5.33 days) and the shortest on cultivar Uzbek (4.54 days). However, the net reproductive rate (R0), intrinsic rate of population increase (r) and finite rate of population increase (λ) were not significantly different on five cultivars of green gram. The amylolytic and proteolytic activities of fourth instar larvae were lowest on cultivar Sekhavat. According to the findings of the present study, no difference was found in the susceptibility and resistance of the studied green gram cultivars to the cowpea weevil.

کلیدواژه‌ها [English]

  • Storage pest
  • life table
  • seed resistance
  • legume cultivar

© 2025 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non-Commercial 4.0 International Public License.

AACC, 2000. Approved methods of the American association of cereal chemists.10th, American association of cereal chemists, Saint Paul, Minnesota.
Azzouz, H., A. Cherqui, E. D. M. Campan, Y. R. Duport, G. Jouanin, L. Kaiser & Giordanengo, p.  (2005) Effects of plant protease inhibitors oryzacystatin I and soybean Bowman–Birk inhibitor, on the aphid Macrosiphum euphorbiae (Homoptera: Aphididae) and its parasitoid Aphelinus abdominalis (Hymenoptera: Aphelinidae). Journal of Insect Physiology, 51: 75-86.. https://doi.org/10.1016/j.jinsphys.2004.11.010
Bernfeld, P. (1955) Amylase α and β. Methods in Enzymology, 1: 149-154. https://doi.org/10.1016/0076-6879(55)01021-5
Bidar, F., J. Razmjou, A. Golizadeh, S. A. A. Fathi, A. Ebadollahi & Naseri, B. (2021) Effect of different legume seeds on life table parameters of cowpea weevil, Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 90: 101755. https://doi.org/10.1016/j.jspr.2020.101755
Borzoui, E., Bandani, A. R. (2013) Wheat and triticale proteinaceous seed extracts inhibit gut α-amylase and protease of the carob moth, Ectomyelois ceratoniae. Molecular Entomology, 4: 13–21. https://doi: 105376/me.2013.04.0003
Bradford, M. A. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-day binding. Analytical Biochemistry, 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Chi, H. (1988) Life-table analysis incorporating both sexes and variable development rates among individuals. Environmental Entomology, 17(1): 26-34. https://doi.org/10.1093/ee/17.1.26
Chi, H. (2021) TWOSEX–MSChart: a Computer Program for the Age Stage, Two-Sex Life Table Analysis. National Chung Hsing University, Taichung, Taiwan. doi:10.1127/entomologia/2022/1851
Chi, H. & Su, H. Y. (2006) Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead)(Hymenoptera: Braconidae) and its host Myzuspersicae (Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology, 35(1): 10-21. https://doi.org/10.1603/0046-225X-35.1.10
Cohen, A. C. (1993) Organization of digestion and preliminary characterization of salivary trypsin-like enzymes in a predaceous heteropteran, Zelus renardii. Journal of Insect Physiology, 39 (10): 823-829. https://doi.org/10.1016/0022-1910(93)90114-7
Devi, M. B. Su, Devi, N. V.  (2014) Biology and morphometric measurement of cowpeaweevil, Callosobruchus maculatus F. (Coleoptera: Bruchidae) in green gram. Journal of Entomology and Zoology Studies, 2 (3): 74-76.
FAO, (2016) Food and Agriculture Organization of the United Nations, Rome, Italy.
Folin, O. & Ciocalteu, V. (1927) On tyrosine and tryptophane determinations in proteins. Journal of Biological Chemistry, 73: 627-650. https://doi: 10.1016/S0021-9258(18)84277-6
Johnson, J. A. & Valero, K. A.  (2003) Use of commercial freezers to control cowpea weevil, Callosobruchus maculatus (Coleoptera: Bruchidae), in organic garbanzo beans. Journal of Stored Product Research, 96(6): 1952- 1957. https://doi.org/10.1603/0022-0493-96.6.1952
Kazemi, F., Talebi, A. A., Fathipour, Y.  & Farahani, S. (2009) A comparative study on the effect of four leguminous species on biological and population growth parameters of Callosobruchus maculatus (F.) (Col.: Bruchidae). Advances in Environmental Biology, 3(3): 226-232.
Kennedy, G. G., Gould, F., Deponti, O. M. B. & Stinner, R. E.  (1987) Ecological, agricultural and commercial considerations in the deployment of insect resistant King ABS (1994) Heliothis/Helicoverpa (Lepidoptera: Noctuidae). In: Mathews GA, Tunstall JP (eds) Insect Pests of Cotton, pp: 39-106. CAB International, U.K.
Kotkar, H. M., Sarate, P. J., Tamhane, V. A., Gupta, V.  S.  & Giri, A. P. (2009) Responses of midgut amylases of Helicoverpa armigera to feeding on various host plants. Journal of Insect Physiology, 55: 663-670. https://doi.org/10.1016/j.jinsphys.2009.05.004
Krzyżowski, M., Baran, B. & Francikowski, J. (2021) Intergenerational transmission of resistance of Callosobruchus maculatus to essential oil treatment. Molecules, 26(15): 4541. https://doi.org/10.3390/molecules26154541
Kumar, R. (2017) Insect Pests of Stored Grain: Biology, Behavior, and Management Strategies. https://doi.org/10.1201/9781315365695
Lazar, L., Panickar, B. & Patel, P. S. (2014) Impact of biochemicals on the developmental stages of pulse beetle, Callosobruchus maculatus infesting green gram. Journal of Food Legumes, 27(2): 121-125. https://doi.org/10.59797/jfl.v27i2.810
Mansouri, S. M., Naseri, B. & Bidar, F. (2022) Oviposition preference, population growth and digestive enzymatic function of Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) on six legume grains. Journal of Stored Products Research, 99. https://doi.org/10.1016/j.jspr.2022.102011
Mbata, G. N. (1993) Evaluation of susceptibility of varieties of cowpea to Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic.) (Coleoptera: Bruchidae). Journal of Stored Products Research, 29:. https://doi.org/10.1016/0022-474X(93)90002-L
Meda, A., Lamien, C. E., Romito, M., Millogo, J. & Nacoulma, O. G. (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry, 91(3): 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006
Messina, F. J. (1991) Life history variation in a seed beetle: adult egg-laying vs. larval competitive ability. Oecologia, 85: 447-455.
Mita, S., Murano, N., Akaike, M. & Nakamura, K. (1997) Mutants of Arabidopsis thaliana with pleiotropic effects on the expression of the gene for β‐amylase and on the accumulation of anthocyanin that are inducible by sugars. The Plant Journal, 11(4): 841-851.  https://doi.org/10.1046/j.1365-313X.1997.11040841.x
Mitchell, R. (1990) Behavioral ecology of Callosobruchus maculatus. pp. 317-330in Fujii, K., Gatehouse, A.M.R. Johnson, C.D. Mitchell, R. and Yoshida, T. (Eds.) Bruchids and Legumes: Economics, Ecology and Coeuolution. Kluwer, London.
Mohandass, S. M., Arthur, F. H., Zhu, K. Y. & Throne, J. E. (2006) Hydroprene: mode of action current status in stored-product pest management, insect resistance, and future prospects. Crop Protection, 25: 602-909. https://doi.org/10.1016/j.cropro.2006.01.014
Naseri, B., Hamzavi, F., Ebadollahi, A. & Sheikh, F. (2022) Physicochemical traits of Vicia faba L. seed cultivars affect oviposition preference and demographic parameters of Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae). Journal of Stored Products Research, 95. https://doi.org/10.1016/j.jspr.2021.101924.
Patil, S. M., Jadhav, I. D. (1985) Studies on the relative susceptibility of some promising varieties of pea, Pisum sativum to the pulse beetle, Callosobruchus maculatus in storage. Bulletin of Grain Technology, 20: 28.
Pourmorad, F., Hosseinimehr, S. J. & Shahabimajd, N. (2006) Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. African Journal of Biotechnology, 5: 1142-1145. http://www.academicjournals.org/AJB
Roesli, R., Dobie, P. & Gerard, B. (1990) Strain differences in two species of Callosobruchus (Coleoptera: Bruchidae) developing on seeds of cowpea {Vigna unguiculata (L.)} and green gram {V. radiata (L.)}. Biotropia, 4: 19-30.
Sanon, A., Ba, N. M., Binso-Dabire, C. L. & Pittendrigh, B. R.  (2010) Effectiveness of spinosad (naturalytes) in controlling the cowpea storage pest, Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Economic Entomology, 103(1): 203-210. https://doi.org/10.1603/EC09093
Sarboland, S., Mehrkhou, F. & Imani, M (2017) Gut proteolytic profile of larval Callosobruchus maculatus (Coleoptera: Chrysomelidae) in response to feeding on different fabaceous host plants. Journal of Agricultural Science and Technology, 19: 121-132.
Sarikarin, N., Srinives, P., Kaveeta, R. & Saksoong, P. (1999) Effect of seed texture layer on bruchid infestation in mungbeanVigna radiata (L.) Wilczek. Science Asia, 25: 203–206.. doi:10.2306/scienceasia1513-1874.1999.25.203
Seram, D., Mohan, S., Kennedy, J. S. & Senthil, N. (2016) Development and damage assessment of the storage beetle, Callosobruchus maculatus (Thanjavur and Coimbatore strain) under normal and controlled conditions . Pp. 25–31. In: Navarro S, Jayas DS, Alagusundaram K, (Eds.) Proceedings of the 10th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2016), CAF Permanent Committee Secretariat, Winnipeg, Canada.
Sheligl, H. Q. (1986) Die verwertungorgngischersourendurch chlorella lincht. Planta Journal, 47-51.
Silva, C. P., Terra, W. R., Xavier-Filho, J., Grossi de Sa, M. R., Isejima, E. M., DaMatta, A. R., Miguens, F. C. & Bifano, T. D. (2001) Digestion of legume starch granules by larvae of Zabrotes subfasciatus (Coleoptera: Bruchidae) and the induction of α–amylases in response to different diets. Insect Biochemistry and Molecular Biology, 31: 41-50. https://doi.org/10.1016/S0965-1748(00)00103-X
Southgate, B. J. (1979) Biology of the Bruchidae. Annual Review of Entomology, 24: 449-473. https://doi.org/10.1146/annurev.en.24.010179.002313
CAPTCHA Image