استراتژی سرما سختی لاروهای بید چغندر قند Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) جمع آوری شده از مزرعه

نویسندگان

1 پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 گروه حشره شناسی دانشکده کشاورزی دانشگاه تربیت مدرس

چکیده

The beet moth, Scrobipalpa ocellatella is recognized as a widespread agricultural pest. Cold hardiness strategy of the beet moth larvae was investigated through monitoring seasonal changes at supercooling points and lower lethal temperatures. Furthermore, the role of microhabitat in winter survival was studied. The mean SCPs of the last instar larvae was not significantly different from November 2010 to April 2011. Mean inoculative freezing point
(-8.0 ± 1.44 °C) of the last instar larvae was significantly higher than mean SCP (-14.9 ± 0.93 °C). The cold hardiness of the pest shows seasonal fluctuation in response to reduction of air temperature. A 50% mortality (LT50) occurred at -11 ºC in November and -14 ºC in January and reduced to -18 ºC in February and finally increased to -14.5 ºC in April. Glycerol, sorbitol, trehalose, and myo-inositol were identified components in whole body extracts of S. ocellatella larvae. However, total cryoprotectants could not have significant effects on the cold tolerance. Larvae of S. ocellatella could tolerate subzero temperatures near their SCPs. Our findings show that beet moth larvae utilize moderately chill tolerance strategy during winter.

کلیدواژه‌ها


عنوان مقاله [English]

Cold hardiness strategy in field collected larvae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae)

نویسندگان [English]

  • Zahra Ganji 1
  • Saeid Moharramipour 2
1 Agriculture & Natural resources Campus of Tehran University
2 Department of Entomology, Faculty of Agriculture, Tarbiat Modares University
چکیده [English]

The beet moth, Scrobipalpa ocellatella is recognized as a widespread agricultural pest. Cold hardiness strategy of the beet moth larvae was investigated through monitoring seasonal changes at supercooling points and lower lethal temperatures. Furthermore, the role of microhabitat in winter survival was studied. The mean SCPs of the last instar larvae was not significantly different from November 2010 to April 2011. Mean inoculative freezing point
(-8.0 ± 1.44 °C) of the last instar larvae was significantly higher than mean SCP (-14.9 ± 0.93 °C). The cold hardiness of the pest shows seasonal fluctuation in response to reduction of air temperature. A 50% mortality (LT50) occurred at -11 ºC in November and -14 ºC in January and reduced to -18 ºC in February and finally increased to -14.5 ºC in April. Glycerol, sorbitol, trehalose, and myo-inositol were identified components in whole body extracts of S. ocellatella larvae. However, total cryoprotectants could not have significant effects on the cold tolerance. Larvae of S. ocellatella could tolerate subzero temperatures near their SCPs. Our findings show that beet moth larvae utilize moderately chill tolerance strategy during winter.

کلیدواژه‌ها [English]

  • Cold hardiness
  • inoculative freezing point
  • lower lethal temperature
  • beet moth
  • suprcooling point
Andreadis, S. S., Vryzas, Z., Papadopoulou-Mourkidou, E. & Savopoulou-Soultani, M. (2011) Cold tolerance of field-collected and laboratory reared larvae of Sesamia Nonagrioides (Lepidoptera: Noctuidae). Cryo-Letters 32, 297-307.
Arnaudov, V., Raykov, S., Davidova, R., Hristov, H., Vasilev, V. & Petkov, P. (2012) Monitoring of pest populations: an important element of integrated pest management of field crops. Journal of Agricultural Science and Technology4 (1), 77-80.
Atapour, M. & Moharramipour, S. (2009) Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae). Environmental Entomology 38, 260-265.
Bale, J. S. (1987) Insect cold hardiness: freezing and supercooling - an ecophysiological perspective. Journal of Insect Physiology 33, 899-908.
Bale, J. S. (1996) Insect cold hardiness: A matter of life and death. European Journal of Entomology 93, 369-382.
Bale, J. S. (2002) Insects at low temperatures: from molecular biology to distributions and abundance.Philosophical transactions of the Royal Society of London B: Biological Sciences. 357 (1423), 849-862.
Block, W., Baust, J. G., Franks, F., Johnston, I. A., & Bale, J. (1990) Cold tolerance of insects and other arthropods [and discussion]. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 326(1237), 613-633.
Boardman, L., Grout T. G. & Terblanche, J. S. (2012) False codling moth (Lepidoptera, Tortricidae) larvae are chill-susceptible. Journal of Insect Science 19, 315-328.
Cannon, R. J. C. & Block, W. (1988) Cold tolerance of microarthropods. Biological Reviews 63, 23–77.
Chen, B. & Kang, L. (2002)Cold hardiness and supercooling capacity in the pea leafminer Liriomyza huidobrensis. Cryo-Letters 23, 173–182.
Chen, B. & Kang, L. (2005) Implication of pupal cold tolerance for the northern overwintering range limit of the leafminer Liriomyza sativae (Diptera: Agromyzidae) in China. Applied Entomology and Zoology 40(3), 437–446.
Coll, M. & Bottrell, D. G. (1991) Microhabitat and resource selection of the European corn borer (Lepidoptera: Pyralidae) and its natural enemies in Maryland field corn. Environmental Entomology 20 (2), 526–533.
Coyle, D. R., Duman, J. G. & Raffa, K. F. (2011) Temporal and species variation in cold hardiness among invasive rhizophagous weevils (Coleoptera: Curculionidae) in a northern hardwood forest.Annals of the Entomological Society of America104, 59–67.
Danks, H. V. & Jones, J. W. (1978) Further observations on winter cocoons in Chironomidae (Diptera). Canadian Entomologist 110, 667–669.
Duman, J. G., Wu, D. W., Xu, L., Tursman D. & Olsen, T. M. (1991). Adaptations of insects to subzero temperatures. The Quarterly Review of Biology 66, 387–410.
Ganji, Z. & Moharramipour, S. (2015a). Seasonal changes in supercooling point and cold tolerance in field collected larvae of the beet moth, Scrobipalpa ocellatella (Lepidoptera: Gelechiidae) in Karaj, Iran. Journal of Entomological Society of Iran 35(2), 63–73.
Ganji, Z. & Moharramipour, S. (2015b). Variation of supercooling point in overwintering larvae of Scrobipalpa ocellatella (Lepidoptera: Gelechiidae). Journal of Crop Protection 4(2), 145–156.
Heydari, M. & Izadi, H. (2014) Effects of seasonal acclimation on cold tolerance and biochemical status of the carob moth, Ectomyelois ceratoniae Zeller, last instar larvae. Bulletin of Entomological Research104, 592–600.
Horwath, K. L. & Duman, J. G. (1982) Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. Journal of Experimental Zoology 219, 267–270.
Izumi, Y., Anniwaer, K., Yoshida H., Sonoda S., Fujisaki K. & Tsumuki H. (2005) Comparison of cold hardiness and sugar content between diapausing and nondiapausing pupae of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Physiological Entomology 30, 36–41.
Jo, H. M. & Kim, Y. (2001) Relationship between cold hardiness and diapause in the smaller fruit tortrix, Adoxophyes orana (Fischer von Roslerstamm). Journal of Asia-Pacific Entomology 4, 1–9.
Kalsta, O. P., Moilonas, P. G. & Savopoulou-Soultani, M. (2006) Diapause development and cold hardiness of Pectinophora gossypiella (Lepidoptera: Gelechiidae) larvae in Greece. European Journal of Entomology103, 541–545.
Khani, A. and Moharramipour, S. (2010) Cold hardiness and supercooling capacity in the overwintering larvae of the codling moth, Cydia pomonella. Journal of Insect Science 10, 83.
Khani, A., Moharramipour, S. & Barzegar, M. (2007)Cold tolerance and trehalose accumulation in overwintering larvae of the codling moth, Cydia pomonella (Lepidoptera: Tortricidae). European Journal of Entomology 104, 385– 392.
Kheyri, M., Naiim, A., Fazeli, M., Djavan-Moghaddam, H. & Eghtedar, E. (1980) Some studies on Scrobipalpa ocellatella Boyd in Iran. Applied Entomology and Phytopathology 48, 1–39. [In persian].
Klok, C. J. & Chown, S. L. (2005) Inertia in physiological traits: Embryonopsis halticella caterpillars (Yponomeutidae) across the Antarctic Polar Frontal Zone. Journal of Insect Physiology 51, 87–97.
Košťál, V. & Šimek, P. (1995) Dynamics of cold hardiness, supercooling and cryoprotectants in diapausing and non-diapausing pupae of the cabbage root fly, Delia radicum L. Journal of Insect Physiology 41, 627–634.
Larsen, K. J. & Lee, R. E. (1994) Cold tolerance including rapid cold-hardening and inoculative freezing of fall migrant monarch butterflies in Ohio. Journal of Insect Physiology 40, 859–864.
Leather, S. R., Walters, K. F. A. & Bale, J. S. (1995) The ecology of insect overwintering. Cambridge University Press, Cambridge, UK.
Lee, R. E. (1989) Insect cold-hardiness: to freeze or not to freeze. BioScience39, 308–313.
Lee, R. E., Lee, M. R. & Strong-Gunderson, J. M. (1993) Insect cold-hardiness and ice nucleating active microorganisms including their potential use for biological control. Journal of Insect Physiology 39, 1–12.
Lee, R. E. (2010) A primer on insect cold-tolerance. pp. 3–34in Denlinger D. L. & Lee, R. E. (Eds) Low Temperature Biology ofInsects. Cambridge University.
Li, Y. P., Goto, M., Ito, S., Sato Y., Sasaki, K. & Goto, N. (2001) Physiology of diapause and cold hardiness in the overwintering pupae of the fall webworm Hyphantria cunea (Lepidoptera: Arctiidae) in Japan. Journal of Insect Physiology47(10), 1181–1187.
Marie, S. S. (2004) Use of the egg parasitoid Trichogramma evanescens West for controlling the rib miner, Scrobipalpa ocellatella Boyd in sugar beet in Egypt (Lepidoptera:Gelechiidae). Egyptian journal of pest control 14 (2), 128–135.
Morewood, W. D. (1992) Cold storage of Phytoseiulus persimilis (Phytoseiidae). Experimental and Applied Acarology 13, 231–236.
Pullin, A. S. & Bale J. S. (1989) Effects of low temperature on diapausing Aglais urticae and Inachis io (Lepidoptera: Nymphalidae): overwintering physiology. Journal of Insect Physiology 35, 283–290.
Robert, P. C. & Blaisinger, P. 1978. Role of non-host plant chemicals in the reproduction of an oligophagous insect: the beet moth Scrobipalpa ocellatella (Lepidoptera: Glechiidae). Entomologia Experimentalis et Applicata24, 632–636.
Rozsypal, J., Koštál, V., Zahradníčková, H. & Šimek, P. (2013) Overwintering strategy and mechanisms of cold tolerance in the codling moth (Cydia pomonella). PLoS ONE 8 (4), e61745.
Saad, A. & El-Abhrawi, A. (1977) Efficiency of pesticides against sugar-beet borer Scrobipalpa ocellatella Boyd in Iraq. Mededelingen van de Faculteit Landbouwwetenschappen Rijksuniversiteit Gent42, 957–960.
Sabry, K. H., Abdel-Raheem, M. A. & El-Fatih, M. M. (2011) Efficacy of the entomopathogenic fungi; Beauverai bassiana and Metarhizium anisopliae on some insect pests under laboratory conditions. Egyptian journal of pest control 21, 33–38.
Saeidi, F., Moharramipour, S. & Barzegar, M. (2012) Seasonal patterns of cold hardiness and cryoprotectant profiles in Brevicoryne brassicae (Hemiptera: Aphididae). Environmental Entomology 41, 1638–1643.
Sinclair, B. J., Klok, C. J., Scott, M. B., Terblanche, J. S. & Chown, S. L. (2003) Diurnal variation in SCPs of three species of Collembola from Cape Hallett, Antarctica. Journal of Insect Physiology 49, 1049.
SPSS Inc. (2009) PASW Statistics for Windows, Version 18.0. Chicago: SPSS Inc.
Sømme, L. (1982) Supercooling and winter survival in terrestrial arthropods. Comparative Biochemistry and Physiology A 73, 519–543.
Storey, K. B. & Storey, J. M. (1991) Biochemistry of cryoprotectants. pp. 64–93in Lee, R. E. & Denlinger, D. L. (Eds) Insects at low temperature.Chapman and Hall,NY.
Timus, A. M. & Croitoru, N. J. (2006) The phytosanitary form and fighting measures diseases and pests of sugar beet from Republic of Moldova. Zbornik Matice srpske za prirodne nauke 110, 227–238.
Valich, N., Vuchajnk, F., Ferenchak, B., Mlinarich, M. & Trdan, S. (2005) Monitoring of sugarbeet moth (Scrobipalpa ocellatella Boyd, Lepidoptera, Gelechiidae) in Slovenia using pheromone traps. In 7th Slovenian Conference on Plant Protection, Zreče, Slovenia, 8–10 March 2005. pp. 454–458.
Zachariassen, K. E. (1985)Physiology of cold tolerance in insects. Physiological Reviews 65, 799–832.
Zachariassen. K. E. & Kristiansen, E. (2000) Ice nucleation and antinucleation in nature. Cryobiology 41, 257–279.