اثر پیری پروکسی فن و دیفنولان بر دگردیسی و فعالیت‌های آنزیمی کرم جوانه خوار تنباکو Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae)

نوع مقاله : مقاله کامل، انگلیسی

نویسندگان

1 گروه جانورشناسی، دانشگاه الله آباد، پریاگاری، 211002، هند

2 گروه جانورشناسی ، دانشگاه IFTM ، الله آباد ،244102 ، هند

10.61186/jesi.43.4.4

چکیده

کرم جوانه‌خوار تنباکو Spodoptera litura (Lepidoptera: Noctuidae)،آفتی چندخوار روی محصولات کشاورزی است که خسارت اقتصادی شدیدی به بار می‌آورد. در مطالعه حاضر، اثر بیولوژیک و فعالیت آنزیمی دو تنظیم کننده رشد حشرات، پیری پروکسی‌فن و دیفنولان علیه لارو S. litura مورد بررسی قرار گرفت. لاروهای سن ماقبل آخر (0، 24 و 48 ساعته) با دوزهای کشنده (1، 2 و 4 میکروگرم بر میکرولیتر) هر دو آنالوگ هورمونی جوانی (JHAs) به صورت موضعی تیمار شدند. اثرات متعددی از جمله طولانی شدن مدت پوست اندازی لارو به لارو و لارو به شفیره، مرگ و میر لارو و شفیره، خروج ناموفق حشره از مرحله شفیرگی، شکل بینابین، تشکیل تعداد کم شفیره و کاهش ظهور حشره بالغ مشاهده شد. علاوه بر این اثرات در پوست اندازی، هر دو هورمون جوانی دارای اثرات مهاری روی استیل کولین استراز (AChE) بودند اما روی آنزیم گلوتاتیون-S-ترانسفراز (GST) دارای اثرات تحریکی بودند. مقادیر Log IC50 و IC50 پیرپیروکسی فن برای نرخ مهار ظهور بالغین،معادل 98/0- و 1/0 میکروگرم بر میکرولیتر برای لاروهای 24 ساعته، 005/0 و 01/1 میکروگرم بر میکرولیتر برای لاروهای 48 ساعته بود. این مقادیر در دیفنولان برای لاروهای 24 ساعته،  085/0 –و 82/0 میکروگرم بر میکرولیتر بود و در لاروهای 48 ساعته، معادل 09/0 - و 23/1 میکروگرم بر میکرولیتر، محاسبه شد. نتایج نشان داد که هر دو ترکیب تنظیم کننده رشد حشرات، روی لاروهای S. litura دارای قدرت حشره‌کشی هستند.

چکیده تصویری

اثر پیری پروکسی فن و دیفنولان بر دگردیسی و فعالیت‌های آنزیمی کرم جوانه خوار تنباکو Spodoptera litura (Fabricius, 1775) (Lepidoptera: Noctuidae)

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of pyriproxyfen and diofenolan on the metamorphosis and enzymatic activities in tobacco cutworm, Spodoptera litura.

نویسندگان [English]

  • Asmita Basu 1
  • Rahul Maddheshiya 2
1 Department of Zoology, University of Allahabad, Prayagraj (211002), India.
2 Entomology laboratory, Department of Zoology, IFTM University, Moradabad,244102, India
چکیده [English]

Spodoptera litura (Lepidoptera: Noctuidae) is a polyphagous pest of agricultural crops and causes severe economic loss. In the present study, the biological effect and enzymatic activity of two insect growth regulators, pyriproxyfen and diofenolan was evaluated against S. litura larva. The penultimate instar larvae (0, 24, and 48-hours old) were treated topically at the last three abdominal tergites with sublethal doses (1, 2, and 4µg/µl) of both the juvenile hormonal analogues (JHAs). Several effects were observed such as prolongation in larval-larval and larval-pupal ecdysial duration, larval and pupal mortality, eclosion failure, formation of intermediates, low pupation and reduced adult emergence. Along with these metamorphic catastrophe effects, both JHAs had inhibitory effects for acetylcholinesterase (AChE) but excitatory effects for glutathione –S-transferase enzyme (GST). Whereas, Log IC50 and IC50 values for adult emergence inhibition rate were found to be -0.98 and 0.1 µg/ µl for 24-hours old larvae (Pyriproxyfen); 0.005 and 1.01 µg/ µl for 48-hours old larvae (Pyriproxyfen); -0.085 and 0.82 µg/ µl for 24-hours old larvae (Diofenolan); -0.09 and 1.23 µg/ µl for 48-hours old larvae (Diofenolan). Our result manifests the insecticidal potency of both the IGRs against S. litura.

کلیدواژه‌ها [English]

  • Spodoptera litura
  • pyriproxyfen
  • diofenolan
  • acetylcholinesterase
  • glutathione – S-transferase enzyme

 © 2023 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Hu, B., Songzhu, H., He, H., Qi, W., Miaomiao, R., Sufang, H., Xiangrui, T. & Jianya S. (2019) Insecticides induce the co-expression of glutathione S-transferases through ROS/CncC pathway in Spodoptera exigua. Pesticide Biochemistry and Physiology. 155, 58-71. https://doi.org/10.1016/j.pestbp.2019.01.008
Casida, J. E. & Durkin, K. A. (2013) Acetylcholinesterase insecticide retrospective. Chemico-Biological Interactions. 203(1), 221-225. https://doi.org/10.1016/j.cbi.2012.08.002
Cherbas, L., Koehler, M. M. D. & Cherbas, P. (1989) Effects of juvenile hormone on the ecdysone response of Drosophila Kc cells. Developmental Genetics. 10(3), 177–88. https://doi.org/10.1002/dvg.1020100307
Claudianos, C., Ranson, H., Johnson, R. M., Biswas, S., Schuler, M. A., Berenbaum, M. R., Feyereisen, R. & Oakeshott, J. G. (2006) A deficit of detoxification enzymes: Pesticide sensitivity and environmental response in the honeybee. Insect Molecular Biology. 15, 615–636. doi: 10.1111/j.1365-2583.2006.00672.x
Dhadialla, T. S., Carlson, G. R. & Le, D. P. (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology. 43, 545–69. https://doi.org/10.1146/annurev.ento.43.1.545
Dhir, B. C., Mohapatra, H. K. & Senapati, B. (1992) Assessment of crop loss in groundnut due to tobacco caterpillar, Spodoptera litura (F.). Indian Journal of Plant Protection 20, 215-217.
Edwards, J. P. & Abraham, L. (1985) Laboratory evaluation of two insect juvenile hormone analogues against Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Journal of Stored Products Research 21, 189–94. https://doi.org/10.1016/0022-474X(85)90014-1
Ellman, G. L., Courtney, K. D., Andres, V. & Featherstone, R. M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
Gopalakrishnan, S., Chen, F.-Y., Thilagam, H., Qiao, K., Xu, W. F. & Wang, Ke-Jian. (2011) Modulation and interaction of immune-associated parameters with antioxidant in the immunocytes of crab Scylla paramamosain challenged with lipopolysaccharides. Evidence-based Complementary and  Alternative Medicine 824962. https://doi.org/10.1155/2011/824962
Habig, W.  H. (1981) “Assays for differentiation of glutathione S-transferase” in Method in enzymology. ed. B. J. Willian (New York: Academic Press), 398–405. https://doi.org/10.1016/s0076-6879(81)77053-8
Hamaidia, K. (2014) Laboratory evaluation of a biorational insecticide, Kinoprene, against Culex pipiens larvae: effects on growth and development. Annual Research and Review in Biology 4, 2263–73. http://dx.doi.org/10.9734/ARRB/2014/9729
Hoffmann, K. H. & Lorenz, M. W. (1998) Recent advances in hormones in insect pest control. Phytoparasitica 26, 323–30. http://dx.doi.org/10.1007/BF02981447  
Jankowska, M., Rogalska, J., Wyszkowska, J. & Stankiewicz, M. (2018) Molecular Targets for Components of Essential Oils in the Insect Nervous System—A ReviewMolecules 23(1),34. https://doi.org/10.3390/molecules23010034
Kanaan, M. H. (2021) The Negative Effects of Chemical Pesticides and their Consequences on Public Health and the Environment. EC  Veterinary Science 6, 28. https://www.researchgate.net/publication/354282662_The_Negative_Effects_of_Chemical_Pesticides_and_their_Consequences_on_Public_Health_and_the_Environment
Kinareikina, A. & Silivanova, E. (2023) Enzyme Activities in Adult Musca domestica L . Toxics 11(1), 47. https://doi.org/10.3390/toxics11010047
Kostaropoulos, I., Papadopoulos, A. I., Metaxakis, A., Boukouvala, E. & Papadopoulou-Mourkidou, E. (2001) The role of glutathione S-transferases in the detoxification of some organophosphorus insecticides in larvae and pupae of the yellow mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae). Pest Management Science 57(6), 501–508. https://doi.org/10.1002/ps.323  
Li, Y., Qu, C., Zhang, Q., Zhang, L., Luo, C. & Wang, R. (2023) Baseline Susceptibility, Cross-Resistance, and Sublethal Effects of Broflanilide, a Novel Meta-Diamide Pesticide, in Spodoptera litura. International Journal of Molecular Sciences 24, 5351. https://doi.org/10.3390/ijms24065351  
Lionetto, M. G., Caricato, R., Calisi, A., Giordano, M. E. & Schettino, T. (2013) Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Research International 321213. https://doi.org/10.1155/2013/321213
Maddheshiya, R. (2021) Effect of a novel juvenoid fenoxycarb on the pupal-adult transformation in the blowfly, Chrysomya megacephala (Fabricius, 1794) (Diptera: Calliphoridae). Parasitology Research 120, 2351–2356. Available from: https://doi.org/10.1007/s00436-021-07205-9
Maes, K. (2022) Spodoptera litura (taro caterpillar). CABI Compendium. CABI.
Mallikarjuna, N., Kranthi, K. R., Jadhav, D. R., Kranthi, S. & Chandra, S. (2004) Influence of foliar chemical compounds on the development of Spodoptera litura (Fab.) in interspecific derivatives of groundnut. Journal of Applied Entomology 128, 321-328. https://doi.org/10.1111/j.1439-0418.2004.00834.x
Minakuchi, C. & Riddiford, L. M. (2006) Insect juvenile hormone action as a potential target of pest management. Journal of Pesticide Science 31, 77–84. http://dx.doi.org/10.1584/jpestics.31.77
Nasr, H. M., Badaway, M. E. I. & Rabea, E. I. (2010) Toxicity and biochemical study of two insect growth regulators, buprofezin and pyriproxyfen, on cotton leafworm Spodoptera littoralis. Pesticide Biochemistry and Physiology 98, 198-205. https://doi.org/10.1016/J.PESTBP.2010.06.007
Nijhout, H. F. (2015) A Developmental-Physiological Perspective on the Development and Evolution of Phenotypic Plasticity. In Conceptual Change in Biology: Scientific and Philosophical Perspectives on Evolution and Development 307, 147–73. DOI:10.1007/978-94-017-9412-1_7
Ramaiah, M. & Maheswari, T. U. (2018) Biology studies of tobacco caterpillar, Spodoptera litura Fabricius. Journal of Entomology and Zoology Studies 6(5), 2284-2289.
Ramesh, B. S. & Singh, B. (2022) Resistance in Spodoptera litura (F.) to Insecticides and Detoxification Enzymes. Indian Journal of Entomology 85(1), 90–94. https://doi.org/10.55446/IJE.2022.519
Riddiford, L. M., Truman, J. W. & Nern, A. (2018) Juvenile hormone reveals mosaic developmental programs in the metamorphosing optic lobe of Drosophila melanogaster. Biology Open 7(4). https://doi.org/10.1242/bio.034025  
Singh, K. P. & Maddheshiya, R. (2022)‘Insecticidal efficacy of a hormonal analogue on the post-embryonic development of a flesh fly, Sarcophaga ruficornis (Diptera: Sarcophagidae).’ Invertebrate Reproduction and Development  Taylor & Francis. 66, 240–246. https://doi.org/10.1080/07924259.2022.2136015
Singh, S. & Kumar, K. (2015) Comparative efficacy of phenoxy derivative JHAs Pyriproxyfen and Diofenolan against polyphagous pest Spodoptera litura (Fabricius) (Noctuidae: Lepidoptera). Phytoparasitica. 43, 553–63. https://doi.org/10.1007/s12600-015-0473-2
Smith, H. H., Idris, O. A. & Maboeta, M. S. (2021) Global Trends of Green Pesticide Research from 1994 to 2019: A Bibliometric Analysis. Journal of Toxicology https://doi.org/10.1155/2021/6637516
Subramanian, S. & Shankarganesh, K. (2016) Insect Hormones (As Pesticides). Ecofriendly Pest Management for Food Security 613-650. https://doi.org/10.1016/B978-0-12-803265-7.00020-8
Suzuki, T., Sakurai, S. & Iwami, M. (2010) Juvenile hormone delays the initiation of rectal sac distention by disrupting ecdysteroid action in the silkworm, Bombyx mori. Pesticide Biochemistry and Physiology 97, 199–203. http://dx.doi.org/10.1016/j.pestbp.2010.01.005
Tunaz, H. & Uygun, N. (2004) Insect growth regulators for insect pest control. Turkish Journal of Agriculture and Forestry 28(6), 377–387. Available at: https://journals.tubitak.gov.tr/agriculture/vol28/iss6/1
Wang, K. J., Gopalakrishnan, S., Chen, F. Y., Thilagam, H., Qiao, K. & Xu, W. F. (2011) Modulation and interaction of immune-associated parameters with antioxidant in the immunocytes of crab Scylla paramamosain challenged with lipopolysaccharides. Evidence-based Complement Altern Med 824962. https://doi.org/10.1155/2011/824962  
Webb, G., Miller, P., Peters, B. & Winner, S. (2011) Efficacy, environmental persistence and non-target impacts of Pyriproxyfen use against Aedes vigilax in Australia. Proc Seventh International Conference on Urban Pests (ICUP) 151-157.  https://www.researchgate.net/publication/236881941
Wu, J., Li, J., Zhang, C., Yu, X., Cuthbertson, A. G. S. & Ali, S. (2020) Biological Impact and Enzyme Activities of Spodoptera litura (Lepidoptera: Noctuidae) in Response to Synergistic Action of Matrine and Beauveria brongniartii. Frontiers in Physiology 11, 584405.  https://doi.org/10.3389/fphys.2020.584405
Xiao, C., Luan, S., Xu, Z., Lang, J., Rao, W. & Huang, Q. (2017) Tolerance potential of Chilo suppressalis larvae to fipronil exposure via the modulation of detoxification and GABA responses. Journal of Asia-Pacific Entomology 20, 1287–1293. Available from: http://dx.doi.org/10.1016/j.aspen.2017.09.013
Zhou, C., Yang, H., Wang, Z., Long, G. Y. & Jin, D. C. (2018) Protective and detoxifying enzyme activity and ABCG subfamily gene expression in sogatella furciferaunder insecticide stress. Frontiers in Physiology 9, 1–12.   https://doi.org/10.3389/fphys.2018.01890
Zibaee, A., Bandani, A. R. & Tork, M. (2009) Effect of the entomopathogenic fungus, Beauveria bassiana, and its secondary metabolite on detoxifying enzyme activities and acetylcholinesterase (AChE) of the Sunn pest, Eurygaster integriceps (Heteroptera: Scutellaridae). Biocontrol Science and Technology 19(5), 485–98. https://doi.org/10.1080/09583150902847127