Lethal and sublethal effects of Mentha piperita L. and its nanoformulation form on the biological and population growth parameters of Trialeurodes vaporariorum (Westwood) under laboratory conditions

Document Type : Paper, Persian

Authors

1 Department of Plant Protection, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Iranian Research Institute of Plant Protection (IRIPP), Tehran, Iran

10.61186/jesi.44.1.3

Abstract

The greenhouse whitefly, Trialeurodes vaporariorum Westwood, is one of the most destructive greenhouse pest in the world. In this study, the lethal and sublethal effects of Mentha piperita L. essential oil and its nanoformulation were investigated on the T. vaporariorum by considering the biological and population growth parameters. Extraction of essential oil was done by steam distillation using clevenger, and the chemical components of M. piperita were evaluated by gas chromatography-mass spectrometry. The results showed that monoterpenoids including carvone (%57.13) and limonene (%26.90) were the main characterized components of pipermint essential oil. The characterization of nanoformulation was done using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results showed that the nanoemolsion was spherical in shape with the average sizes of 179.74 nm. The leaf dipping was used for the bioassays. The bioassay results showed that, the nanoformulation of eesential oil (LC50: 3375.411 ppm) was more toxic than the pipermint (LC50: 4536.118 ppm) on the T. vaporariorum adults. The life table data were analyzed based on the age-stage, two-sex life table theory. Also, the sublethal concentration (LC25) of pipermint nanoformulation affected life table parameters of T. vaporariorum by prolonging the developmental time of T. vaporariorum, decreasing the female longevity and fecundity compared with essential oil. Also, the population growth parameters such as intrinsic rate of increase and finite rate of increase treated by nanoemolsion of essential oil (0.076±0.006 day -1) and (1.079±0.007 day -1) were lower than the essential oil (0.084±0.006 day -1) and (1.087±0.006 day -1), significantly. The total results showed that pipermint,s nanoformulation has the most lethal and sublethal effects on greenhouse whitefly compared with the pured form of essential oil which can be consider in integrated pest management program (IPM) of this pest.

Graphical Abstract

Lethal and sublethal effects of  Mentha piperita  L. and its nanoformulation form on the biological and population growth parameters of  Trialeurodes vaporariorum  (Westwood) under laboratory conditions

Keywords

Main Subjects


© 2024 by Author(s), Published by the Entomological Society of Iran

This Work is Licensed under Creative Commons Attribution-Non Commercial 4.0 International Public License

Anjali, C. H., Sharma, Y., Mukherjee, A. & Chandrasekaran, N. (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Management Science 68(2), 158-163. https://doi.org/10.1002/ps.2233.
Aroiee, H., Mosapoor, S. & Karimzadeh, H. (2005( Control of greenhouse whitefly (Trialeurodes vaporariorum) by Thyme and peppermint. KMITL Science Journal 5(2), 511-514.
Aslan, İ., Özbek, H., Çalmaşur, Ö. & Şahi̇n, F. (2004) Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Industrial Crops and Products 19(2), 167-173. https://doi.org/10.1016/j.indcrop.2003.09.003.
Bakr, R. F. A., Fattah, H. M. A., Salim, N. M. & Atiya, N. H. (2010) Insecticidal activity of four volatile oils on two museum insect pests. Journal of Biological Sciences 2 (2), 57- 66. https://doi.org/10.21608/eajbsf.2010.17454.
Benelli, G., Pavela, R., Giordani, C., Casettari, L., Curzi, G., Cappellacci, L., Petrelli, R. & Maggi, F. (2018) Acute and sub-lethal toxicity of eight essential oils of commercial interest against the filariasis mosquito Culex quinquefasciatus and the housefly Musca domestica, Industrial Crops and Products 112, 668–680. https://doi.org/10.1016/j.indcrop.2017.12.062.
Bi, J. L. & Toscano, N. C. (2007) Current of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in Southern California. Pest Management Science 63(8), 747-752.https://doi.org/10.1002/ps.1405.
Bolandnazar, A., Ghadamyari, M., Memarzadeh, M., Jalali Sandi, J. & Zolfaghari, M. (2020) Investigation of biochemical and enzymatic changes induced by emulsion and ‎nanoemulsion formulations of some essential oils and an herbal extract on Bemisia tabaci (Gennadius)‎. Iranian Journal of Plant Protection Science 50(2), 143-158. https://doi.org/10.22059/ijpps.2019.270778.1006868.
Bolandnazar, A., Ghadamyari, M., Memarzadeh, M. & Jalali Sandi, J. (2018) Oviposition inhibitory and lethal effect of essential oils of rosemary, peppermint and eucalyptus and thyme extract, formulated as nano- and microemulsions, on Bemisia tabaci under greenhouse condition. Journal of Entomological Society of Iran 38 (1), 81-97. https://doi.org/10.22117/jesi.2018.116014.1152.
Braham, M. & Hajji, L. (2011) Management of Tuta absoluta (Lepidoptera: Gelechiidae) with insecticides on tomatoes. Insecticides-Pest Engineering 333-354. https://doi.org/10.5772/27812.
Capinera, J. L. (2008) Greenhouse whitefly, Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae). In: J.L. Capinera (ed.). Encyclopedia of Entomology. Springer.1835–1840.Dordrecht.Kluwer Academic Publishers: Dordrecht, The Netherlands. Boston. MA.USA. London. UK.
Castle, S. J., Palumbo, J. C., Prabhaker, N., Horowitz, A. R. & Denholm, I. (2010) Ecological determinants of Bemisia tabaci resistance to insecticides. In P.A. Stansly & S. E. Naranjo(eds.). Bemisia: Bionomics and Management of a Global Pest.423-465.Springer.https://doi.org/10.1007/978-90-481-2460-2_16.
Chi, H. (2020) TWOSEX-MSChart: a computer program for age stage, two-sex li fe table analysis. National Chung Hsing University, Taichung, Taiwan; available from http://140.120.197.173/ Ecol ogy/Download/TWOSEX-MSChart.rar.
Cloyd, R. A., Galle, C. L., Keith, S. R., Kalscheur, N. A. & Kemp, K. (2009) Effect of commercially available plant-derived essential oil products on arthropod pests. Journal of Economic Entomology 102 (4), 1567-1579. https://doi.org/10.1603/029.102.0422.
Desneux, N., Decourtye, A. & Delpuech, J. M. (2007) The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology 52, 81-106. https://doi.org/10.1146/annurev.ento.52.110405.091440.
Ebadollahi, A., Ashrafi-Parchin, R. & Farjaminezhad, M. (2016) Phytochemistry, toxicity and feeding inhibitory activity of Melissa officinalis L. essential oil against a cosmopolitan insect pest; Tribolium castaneum Herbst. Toxin Reviews 35, 77–82. https://doi.org/10.1080/15569543.2016.1199572.
Ebneabbasi, S., Mehrkhou, F. & Fourouzan, M. (2023).  Lethal and sublethal effects of thiocyclam hydrogen oxalate and flubendimide on the population growth parameters and population projection of Tuta absoluta (Lepidoptera: Gelechiidae). Journal of Entomological Society of Iran 43 (3): 219-231.
Fahim, M., Safaralizadeh, M. H. & Safavi, S. A. (2012) Evaluation of susceptibility of egg, nymph and adult of greenhouse whitefly Trialeurodes vaporariorum (Hem. Aleyrodidae) to two plant essential oils (Spearmint and Cumin) under laboratory conditions. Journal of Agricultural Science and Sustainable Production 22(3), 28-35.
Filomeno, C. A., Barbosa, L. C. A., Teixeira, R. R., Pinheiro, A. L., Farias, E., Ferreira, J. S. & Picanco M. C. (2020) Chemical diversity of essential oils of Myrtaceae species and their insecticidal activity against Rhyzopertha dominica. Crop Protection 137, 105309. https://doi.org/10.1016/j.cropro.2020.105309.
Gerling, D. & Sinai, P. (1994)E Buprofezin effects on two parasitoid species of whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology 87(4), 842-846. https://doi.org/10.1093/jee/87.4.842.
Giunti, G., Palermo, D., Laudani, F., Algeri, G. M., Campolo, O. & Palmeri, V. (2019) Repellence and acute toxicity of a nano-emulsion of sweet orange essential oil toward two major stored grain insect pests. Industrial Crops and Products 142, 111869. https://doi.org/10.1016/j.indcrop.2019.111869.
Gonzalez, J. O. W., Gutiérrez, M. M., Ferrero, A. A. & Band, B. F. (2014) Essential oils nano-formulations for stored-product pest control–characterization and biological properties. Chemosphere 100, 130-138. https://doi.org/10.1016/j.chemosphere.2013.11.056.
Grafton-Cardwell, E. E., Godfrey, K. E. & Rogers, M. E. (2005) Citrus IPM: Integrated pest management for citrus. University of California Division of Agriculture and Natural Resources.
Guleria, G., Thakur, S., Shandilya, M., Sharma, S., Thakur, S. & Kalia, S. (2022) Nanotechnology for sustainable agro-food systems: The need and role of nanoparticles in protecting plants and improving crop productivity. Plant Physiology and Biochemistry 194, 533-549. https://doi.org/10.1016/j.plaphy.2022.12.004.
Heydarzadeh, A., Valizadegan, O., Negahban, M. & Mehrkhou, F. (2019). Efficacy of Mentha spicata and Mentha pulegium essential oil nanoformulation on mortality and physiology of Tribolium castaneum (Col.: Tenebrionidae). Journal of Crop Protection 8(4), 501-520. URL: http://jcp.modares.ac.ir/article-3-34193-en.html.
Horowitz, A. R., Kontsedalov, S. & Ishaaya, I, (2004) Dynamics of resistance to the neonicotinoids actamiprid and thiamethoxam in Bemisia tabaci. Insecticides Resistance and Resistance Management 97(6), 2051-2056. https://doi.org/10.1093/jee/97.6.2051.
Hu, L. X., Chi, H., Zhang, J., Zhou, Q. & Zhang, R. J. (2010) Life table analysis of the performance of Nilaparvata lugens (Hemiptera: Delphacidae) on two wild rice species. Journal of Economic Entomology 103, 1628-1635. https://doi.org/10.1603/EC10058.
Isman, M. B. (2020) Botanical insecticides in the twenty-first century—fulfilling their promise. Annual Review of Entomology 65, 233–249. https://doi.org/10.1146/annurev-ento-011019-025010.
Isman, M., Miresmailli, S. & Machial, C. (2010) Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry Reviews 10, 197-204. https://doi.org/10.1007/s11101-010-9170-4.
Isman, M. B. (2000) Plant essential oils for pest and disease management. Crop Protection 19, 603–608. https://doi.org/10.1016/S0261-2194 (00)00079-X.
Iusucan, G., Kiuriumer, N., Kurkcuogylu, M., Basuer K. & Demiurciu, F. (2002) Antimicrobial screening of Mentha piperita essential oils. Journal of Agricultural and Food Chemistry 50, 3943-3946. https://doi.org/10.1021/jf011476k.
Khoobdel, M., Ahsaei, S. M. & Farzaneh, M. (2017) Insecticidal activity of polycaprolactone nanocapsules loaded with Rosmarinus officinalis essential oil in Tribolium castaneum (Herbst). Entomological Research 47(3), 175-184. https://doi.org/10.1111/1748-5967.12212.
Kim, S. W., Kang, J. & Park, I. K. (2013) Fumigant toxicity of Apiaceae essential oils and their constituents against Sitophilus oryzae and their acetylcholinesterase inhibitory activity. Journal of Asia-Pacific Entomology 16, 443–448. https://doi.org/10.1016/j.aspen.2013.07.002.
Kłyś, M., Izdebska, A. & Malejky-Kłusek, N. (2020) Repellent effect of the Caraway Carum carvi L. on the rice weevil Sitophilus oryzae L. (Coleoptera, Dryophthoridae). Insects 11, 836. https://doi.org/10.3390/insects11120836.
Kostic, M., Stankovic, S. & Kuzevski, J. (2015) Role of AChE in Colorado potato beetle (Leptinotarsa decemlineata Say) resistance to carbamates and organophosphates. in S. Trdan, (ed.).  Insecticides Resistance. pp. 19-40. InTech. https://doi.org/10.5772/61460.
Koul, O., Walia, S. & Dhaliwal, G. S. (2008) Essential oils as green pesticides: potential and constraints. Biopesticides International 4 (1), 63-84.
Kumar, P., Mishra, S., Malik, A. & Satya, S. (2011) Repellent, larvicidal and pupicidal properties of essential oils and their formulations against the housefly, Musca domestica, Medical and Veterinary Entomology 25, 302–310. https://doi.org/10.1111/j.1365-2915.2011.00945.x.
Lashgari, A., Mashayekhi, S., Javadzadeh, M. & Marzban, R. (2014) Effect of Mentha piperita and Cuminum cyminum essential oil on Tribolium castaneum and Sitophilus oryzae. Archives of Phytopathology and Plant Protection 47 (3), 324-329.  https://doi.org/10.1080/03235408.2013.809230.
Lashkari, M. R., Sahragard, A. & Ghadamyari, M. (2007) Sublethal effects of imidacloprid and pymetrozine on population growth parameters of cabbage aphid, Brevicoryne brassicae on rapeseed, Brassica napus L. Journal of Insect Science 14, 207-212. https://doi.org/10.1111/j.1744-7917.2007.00145.x.
Lee, B. H., Lee S. E., Annis P. C., Pratt S. J., Park B. S. & Tumaalii, F. (2002) Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, Tribolium castaneum Herbst. Journal of Asia-Pacific Entomology 5(2), 237-240. https://doi.org/10.1016/S1226-8615(08)60158-2.
LeOra Software, (2002), Polo Plus, a user’s guide to probit or logit analysis, LeOra Software, Berkeley, CA.
Lo Pinto, M., Leandro, V. & Agrò, A. (2020). Adulticidal activity of essential oils of Mentha piperita L., Cupressus sempervirens L., and Eucalyptus globulus Labill. against the tomato leafminer Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Journal of Entomology and  Zoology Studies, 8(6), 1721-1728.
Mahmoodi, L., Mehrkhou, F., Guz, N., Forouzan, M. & Atlihan, R. (2020) Sublethal effects of three insecticides on fitness parameters and population projection of Brevicoryne brassicae (Hemiptera: Aphididae). Journal of Economic Entomology 113(6), 2713-2722. https://doi.org/10.1093/jee/toaa193.
Mareggiani, G., Picollo, M. I., Zerba, E., Burton, G., Tettamanzi, M. C., Benedetti Doctorovich, M. O. V. & Veleiro. A. S. (2000) Antifeedant activity of withanolides from Salpichroa origanifolia on Musca domestica. Journal of Natural Products 63, 1113-1116. https://doi.org/10.1021/np0001068.
McKay, D. L. & Blumberg, J. B. (2006) A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytothearapy Research 20(8), 619-633. https://doi.org/10.1002/ptr.1936.
Nasseri, M., Golmohammadzadeh, S., Arouiee, H., Jaafari, M. R. & Neamati, H. (2016) Antifungal activity of Zataria multiflora essential oil-loaded solid lipid nanoparticles in-vitro condition. Iranian Journal of Basic Medical Sciences 19(11), 1231-1237.
Nickavar, B. & Jabbareh, F. (2018) Analysis of the essential oil from Mentha pulegiumand identification of its antioxidant constituents, Journal of Essential OilBearing Plants 21, 223–229. https://doi.org/10.1080/0972060X.2018.1433073.
Oftadeh, M., Jalali Sendi, J. & Ebadollahi, A. (2020) Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). Pesticide Biochemistry and Physiology 170, 104702. https://doi.org/10.1016/j.pestbp.2020.104702.
Oftadeh, M., Sendi, J. J., Ebadollahi, A., Setzer, W. N. & Krutmuang, P. (2021) Mulberry protection through flowering-stage essential oil of Artemisia annua against the lesser mulberry pyralid, Glyphodes pyloalis Walker. Foods 10(2), 210. https://doi.org/10.3390/foods10020210.
Oftadeh, M., Jalali Sendi, J. & Ebadollahi, A. (2021) Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. Toxin Reviews, 40 (4), 953-961. https://doi.org/10.1080/15569543.2020.1811345.
Oliveira, C. R., Domingues, C. E., de Melo, N. F., Roat, T. C., Malaspina, O., Jones-Costa, M. & Fraceto, L. F. (2019) Nanopesticide based on botanical insecticide pyrethrum and its potential effects on honeybees. Chemosphere 236, 124282. https://doi.org/10.1016/j.chemosphere.2019.07.013.
Pappas, M. L., Migkou, F. & Broufas, G. D. (2013) Incidence of resistance to neonicotinoid insecticides in greenhouse populations of the whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) from Greece. Applied Entomology and Zoology 48(3), 373-378. https://doi.org/10.1007/s13355-013-0197-z
Patel, C., Srivastava, R. M. & Samraj, J. M. (2022) Comparative study of morphology and developmental biology   of   two   agriculturally   important   whitefly species Bemisia  tabaci  (Asia  II  5)  and  Trialeurodes vaporariorum  from  North-Western  Himalayan  region of India. Brazilian Archives of Biology and Technology 65, e22210034. https://doi.org/10.1590/1678-4324-2022210034.
Pavela, R. (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis, Fitoterapia 76, 691-696. https://doi.org/10.1016/j.fitote.2005.06.001.
Pavela, R., Kaffková, K. & Kumšta, M. (2014) Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus say (Diptera: culicidae). Plant Protection Science 50, 36–42. https://doi.org/10.17221/48/2013-PPS.
Rajendran, S. & Sriranjini, V. (2008) Plant products as fumigants for stored-product insect control. Journal of Stored products Research 44, 126–135. https://doi.org/10.1016/j.jspr.2007.08.003.
Rajkumar, V., Gunasekaran, C., Dharmaraj, J., Chinnaraj, P., Paul C. A. &  Kanithachristy, I. (2020) Structural characterization of chitosan nanoparticle loaded with Piper nigrum essential oil for biological efficacy against the stored grain pest control, Pesticide Biochemistry and Physiology 166, 104566. https://doi.org/10.1016/j.pestbp.2020.104566.
Ramzi, A., El Ouali Lalami, A., Ez zoubi, Y., Assouguem, A., Almeer, R., Najda, A., Ullah, R., Ercisli, S. & Farah, A. (2022) Insecticidal effect of wild-grown Mentha pulegium and Rosmarinus officinalis essential oils and their main monoterpenes against Culex pipiens (Diptera: Culicidae). Plants 11(9), 1193. https://doi.org/10.3390/plants11091193.
Rahmani-Aghdam, E., Mehrkhou, F. & Forouzan, M. (2022). Sublethal effects of herbal insecticides, Azadirachtin and Palizin, on the life history, survival rate and life expectency of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Iran. 24th Iranian Plant Protection Congress. 3-6 September. Tehran. p.46.
Reshadat-Salvanagh, N., Mehrkhou, F. & Forouzan, M. (2022)  Sublethal effects of Flonicamid and Bino2 on the biological properties and life table parameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). Iran. 24th Iranian Plant Protection Congress. 3-6 September. Tehran. p.44.
Reshadat-Salvanagh, N. (2021) Survey on the sublethal effects of Flonicamid and Bino2 on the population growth prameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae).MSc thesis. Urmia University.
Saeedi, M. R. (2022) Survey on the lethal and sublethal effects of Tondexir and Salpipest on the population growth prameters of Trialeurodes vaporariorum (Hemiptera: Aleyrodidae). MSc thesis. Urmia University.
Saeidi, K. & Mirfakhraie, S. (2017) Trials on the timing of chemical control of lentil weevil, Bruchus lentis Frӧlich (Coleoptera: Chrysomelidae: Bruchinae) in lentil lield in Gachsaran region (Iran). Journal of Entomological and Acarological Research 49 (3), 234-252. https://doi.org/10.4081/jear.2017.6829.
Salem, N., Bachrouch, O., Sriti, J., Msaada, K., Khammassi, S., Hammami, M., Selmi, S., Boushih, E., Koorani, S., Abderraba, M., Marzouk, B., Limam, F. & Mediouni Ben Jemaa, J. (2017) Fumigant and repellent potentials of Ricinus communis and Mentha pulegium essential oils against Tribolium castaneum and Lasioderma serricorne. International Journal of Food Properties 20, S2899–S2913. https://doi.org/10.1080/10942912.2017.1382508.
Sampson, B., Tabanca, N., Kirimer, N. & Demirci, B. (2005) Insecticidal activity of 23 essential oils and their major compounds against adult Lipaphis pseudobrassicae (Davis) (Aphididae: Homoptera). Pest Management Science 61, 1122–1128. https://doi.org/10.1002/ps.1100.
Sasson, Y., Levy-Ruso, G., Toledano, O. & Ishaaya, I. (2007) Nanosuspensions: emerging novel agrochemical formulations. in insecticides design using advanced technologies.pp. 1-39. Berlin, Heidelberg: Springer Berlin Heidelberg.
Shekari, M., Jalali Sendi, J., Etebari, K., Zibaee, A. & Shadparvar, A. (2008) Effects of Artemisia annua L. (Asteracea) on nutritional physiology and enzyme activities of elm leaf beetle, Xanthogaleruca luteola Mull. (Coleoptera: Chrysomellidae), Pesticide Biochemistry and Physiology 91, 66–74. https://doi.org/10.1016/j.pestbp.2008.01.003.
Sogan, N., Kala, S., Kapoor, N., Singh, H., Verma, P., Nautiyal, A. & Nagpal, B. N. (2023) Utilization and re-use of orange peel derived oil by formulating nanoemulsion for efficient vector control application. Waste and Biomass Valorization 14, 3415–3427. https://doi.org/10.1007/s12649-023-02094-8.
Sohrabi, F., Shishehbor, P., Saber, M. & Mosaddegh, M. S. (2011) Lethal and sublethal effects of buprofezin and imidacloprid on Bemisia tabaci (Hemiptera: Aleyrodidae). Crop Protection 30 (9), 1190-1195. https://doi.org/10.1016/j.cropro.2011.05.004.
Stankovic, S. & Kostic, M. (2017) Role of carboxylesterases (ALiE) regarding resistance to insecticides: Case study of Colorado potato beetle (Leptinotarsa decemlineata Say). in   V. Shields (ed.). Insect Physiology and Ecology. pp. 159–178.  Rijeka, Croatia, InTech. https://doi.org/10.5772/66254.
Studebaker, E. & Kring, T. J. (2001) Lethal and sublethal effects of early season insecticides on insidious flower bug, (Orius insidiosus); AAES research series 497. Available from:http://arkansasagnews.uark.edu/497-45.pdf/ (accessed 15 December 2007).
Tarigan, S. I., Dadang, D. & Harahap, I. (2016) Toxicological and physiological effects of essential oils against Tribolium castaneum (Coleoptera: Tenebrionidae) and Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of Biopesticides 9(2), 135-147. https://doi.org/10.57182/jbiopestic.9.2.135-147.
Thonggooma, O., Punrattanasin, N., Srisawang, N., Promawan, N. & Thonggoom, R. (2016) In vitrocontrolled release of clove essential oil in self-assembly of amphiphilic polyethylene glycol-block-polycaprolactone. Journal of Microencapsulation 1-9. https://doi.org/10.3109/02652048.2016.1156173.
Tripathi, A. K., Prajapati, V., Aggarwal, K. K. & Khanuja, S. P. S. (2000) Repellancy and toxicity of oils from Artemisia annua to certain stored product Beetles. Journal of Economic Entomology 93(1), 43-47. https://doi.org/10.1603/0022-0493-93.1.43.
Tyagi, A. K. & Malik, A. (2011) Antimicrobial potential and chemical composition of Mentha piperita oil in liquid and vapour phase against food spoiling microorganisms. Food Control 22(11), 1707-1714. https://doi.org/10.1016/j.foodcont.2011.04.002.
Zamani, S., Jalali Sendi, J. & Ghadamyari, M. (2010) Effect of Artemisia annua L. (Asterales: Asteracea) essential oil on mortality, development, reproduction and energy reserves of Plodia interpunctella (Hubner) (Lep.: Pyralidae). Journal of Fertilizers and Biopesticides 2(1), 105. http: //doi.org/10.4172/2155-6202.1000105.